1887

Abstract

Baculovirus repeated open reading frame () genes and their relatives constitute a multigene family, typically with multiple copies per genome, known to occur among certain insect dsDNA viruses and bacteriophages. Little is known about the evolutionary history and function of the proteins encoded by these genes. Here we have shown that and -like () genes occur among viruses of two additional invertebrate viral families, and , and in prokaryotic class II transposons. Analysis of over 100 sequences showed that the N-terminal region, consisting of two subdomains, is the most conserved region and contains a DNA-binding motif that has been characterized previously. Phylogenetic analysis indicated that these proteins are distributed among eight groups, Groups 1–7 consisting of invertebrate virus proteins and Group 8 of proteins in bacteriophages and bacterial transposons. No genes were identified in databases of invertebrate or vertebrate genomes, vertebrate viruses and transposons, nor in prokaryotic genomes, except in prophages or transposons of the latter. The phylogenetic relationship between genes suggests that they have resulted from recombination of viral genomes that allowed the duplication and loss of genes, but also the acquisition of genes by horizontal transfer over evolutionary time. In addition, the maintenance and diversity of genes in different types of invertebrate dsDNA viruses, but not in vertebrate viruses, suggests that these proteins play an important role in invertebrate virus biology. Experiments with the unique gene of multicapsid nucleopolyhedrovirus showed that it is not required for replication, but may enhance replication during the occlusion phase of reproduction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19256-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842531.html?itemId=/content/journal/jgv/10.1099/vir.0.19256-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Tulman E. R., Lu Z., Oma E., Kutish G. F., Rock D. L. 1999; The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73:533–552
    [Google Scholar]
  2. Afonso C. L., Tulman E. R., Lu Z., Balinsky C. A., Moser B. A., Becnel J. J., Rock D. L., Kutish G. F. 2001; Genome sequence of a baculovirus pathogenic for Culex nigripalpus . J Virol 75:11157–11165
    [Google Scholar]
  3. Ahrens C. H., Russell R. L. Q., Funk C. J., Evans T. J., Harwood S. H., Rohrmann G. F. 1999; The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 229:381–399
    [Google Scholar]
  4. Almendral J. M., Almazan F., Blasco R., Vinuela E. 1990; Multigene families in African swine fever virus: family 110. J Virol 64:2064–2072
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. Struhl K. (editors) 1994 Current Protocols in Molecular Biology vols 1 and 2 New York: John Wiley & Sons;
    [Google Scholar]
  6. Ayres M. D., Howard S. C., Kuzio J., Lopez-Ferber M., Possee R. D. 1994; The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605
    [Google Scholar]
  7. Bawden A. L., Glassberg K. J., Diggans J., Shaw R., Farmerie W., Moyer R. W. 2000; Complete genomic sequence of the Amsacta moorei : analysis and comparison with other poxviruses. Virology 274:120–139
    [Google Scholar]
  8. Bideshi D. K., Federici B. A. 2000; The Trichoplusia ni granulovirus helicase is unable to support replication of Autographa californica multicapsid nucleopolyhedrovirus in cells and larvae of T. ni. J Gen Virol 81:1593–1599
    [Google Scholar]
  9. Bigot Y., Rabouille A., Sizaret P. Y., Hamelin M. H., Periquet G. 1997; Particle and genomic characterization of a new member of the Ascoviridae , Diadromus pulchellus ascovirus. J Gen Virol 78:1139–1147
    [Google Scholar]
  10. Bigot Y., Stasiak K., Rouleux-Bonnin F., Federici B. A. 2000; Characterization of repetitive DNA regions and methylated DNA in ascovirus genomes. J Gen Virol 81:3073–3082
    [Google Scholar]
  11. Bulach D. M., Kumar A., Zaia A., Liang B., Tribe D. E. 1999; Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J Invertebr Pathol 73:59–73
    [Google Scholar]
  12. Chartier C., Degryse E., Gantzer M., Dieterle A., Pavirani A., Mehtali M. 1996; Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli . J Virol 70:4805–4810
    [Google Scholar]
  13. Cheng C. H., Liu S. M., Chow T. Y., Hsiao Y. Y., Wang D. P., Huang J. J., Chen H. H. 2002; Analysis of the complete genome sequence of the Hz-1 virus suggests that it is related to members of the Baculoviridae. J Virol 76:9024–9034
    [Google Scholar]
  14. De la Vega I., Vinuela E., Blasco R. 1990; Genetic variations and multigene families in African swine fever virus. Virology 179:234–246
    [Google Scholar]
  15. Domingo E., Webster R., Holland J. 1999 Origins and Evolution of Viruses New York: Academic Press;
    [Google Scholar]
  16. Federici B. A. 1980; Isolation of an iridovirus from two terrestrial isopods, the pillbug, Armadillidium vulgare , and the sow bug, Porcellio dilatatus . J Invertebr Pathol 36:373–381
    [Google Scholar]
  17. Federici B. A., Hice R. H. 1997; Organization and molecular characterization of genes in the polyhedrin region of Anagrapha falcifera multinucleocapsid NPV. Arch Virol 142:333–348
    [Google Scholar]
  18. Federici B. A., Vlak J. M., Hamm J. J. 1990; Comparative study of virion structure, protein composition and genomic DNA of three ascovirus isolates. J Gen Virol 71:1661–1668
    [Google Scholar]
  19. Federici B. A., Bigot Y., Granados R. R., Hamm J. J., Miller L. K., Vlak J. M. 2000; Family Ascoviridae . In Viral Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses pp  261–265 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  20. Felsenstein J. 1993 philip: phylogeny inference package, version 3.5c University of Washington; Seattle, WA, USA:
    [Google Scholar]
  21. Gardiner G. R., Stockdale H. 1975; Two tissue-culture media for production of lepidopteran cells and nuclear polyhedrosis viruses. J Invertebr Pathol 25:363–370
    [Google Scholar]
  22. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  23. Gomi S., Majima K., Maeda S. 1999; Sequence analysis of the genome of Bombyx mori nucleopolyhedrosis virus. J Gen Virol 80:1323–1337
    [Google Scholar]
  24. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A. 1995; The DNA sequence of human herpesvirus-6, coding content, and genome evolution. Virology 209:29–51
    [Google Scholar]
  25. Gonzalez A., Calvo V., Almazan F., Almendral J. M., Ramirez J. C., De la Veda I., Blasco R., Vinuela E. 1990; Multigene families in African swine fever virus: family 360. J Virol 64:2073–2081
    [Google Scholar]
  26. Goto C., Hayakawa T., Maeda S. 1998; Genome organization of Xestia c-nigrum granulovirus. Virus Genes 16:199–210
    [Google Scholar]
  27. Hanahan D. 1983; Studies on the transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  28. Harrison R. L., Bonning B. C. 1999; The nucleopolyhedroviruses of Rachiplusia ou and Anagrapha falcifera are isolates of the same virus. J Gen Virol 80:2793–2798
    [Google Scholar]
  29. Hashimoto Y., Hayakawa T., Ueno Y., Fujita T., Sano Y., Matsumoto T. 2000; Sequence analysis of the Plutella xylostella granulovirus genome. Virology 275:358–372
    [Google Scholar]
  30. Hayakawa T., Ko R., Okano K., Seong S. I., Goto C., Maeda S. 1999; Nucleotide sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 30:277–297
    [Google Scholar]
  31. Huang Q., Deveraux Q. L., Maeda S., Salvensen G. S., Stennicke H. R., Hammock B. D., Reed J. C. 2000; Evolutionary conservation of apoptosis mechanisms: lepidopteran and baculoviral inhibitor of apoptosis proteins are inhibitors of caspase-9. Proc Natl Acad Sci U S A 97:1427–1432
    [Google Scholar]
  32. Hyink O., Dellow R. A., Olsen M. J., Caradoc-Davies K. M. B., Drake K., Herniou E. A., Cory J. S., O'Reilly D. R., Ward V. K. 2002; Whole genome analysis of the Epiphyas postvittana nucleopolyhedrosisvirus. J Gen Virol 83:957–971
    [Google Scholar]
  33. Iyer L. M., Aravind L., Koonin E. V. 2001; Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75:11720–11734
    [Google Scholar]
  34. Iyer L. M., Koonin E. V., Aravind L. 2002; Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origins of fungal APSES transcription factors. Genome Biol 3:1–11
    [Google Scholar]
  35. Jakob N. J., Müller K., Bahr U., Darai G. 2001; Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 286:182–196
    [Google Scholar]
  36. Kang W., Suzuli M., Evgueni Z., Okano K., Maeda S. 1999; Characterization of baculovirus repeated open reading frames ( bro ) in Bombyx mori nucleopolyhedrovirus. J Virol 73:10339–10345
    [Google Scholar]
  37. Kuzio J., Pearson M. N., Harwood S. H., Funk C. J., Evans J. T., Slavicek J. M., Rohrmann G. F. 1999; Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar . Virology 253:17–34
    [Google Scholar]
  38. Lopez Ferber M., Argaud O., Croizier L., Croizier G. 2001; Diversity, distribution, and mobility of bro gene in Bombyx mori nucleopolyhedrovirus. Virus Genes 22:247–254
    [Google Scholar]
  39. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  40. Massung R. F., Liu L., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J. 1994; Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201:215–240
    [Google Scholar]
  41. Nevill-Manning C. G., Wu T. D., Brutlag D. L. 1998; Highly specific protein sequence motifs for genome analysis. Proc Natl Acad Sci U S A 95:5865–5871
    [Google Scholar]
  42. Pires S., Ribeiro G., Costa J. V. 1997; Sequence and organization of left multigene family 110 region of the vero-adapted L60V strain of African swine fever virus. Virus Genes 15:271–274
    [Google Scholar]
  43. Rodriguez J. M., Yanez R. J., Pan R., Rodriguez J. F., Salas M. L., Vinuela E. 1994; Multigene families in African swine fever virus: family 505. J Virol 68:2746–2751
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  45. Schnitzler P., Delius H., Schollz J., Touray M., Orth E., Darai G. 1987; Identification and nucleotide sequence analysis of the repetitive DNA element in the genome of fish lymphocystis virus. Virology 161:570–578
    [Google Scholar]
  46. Shorey H. H., Hale R. L. 1965; Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J Econ Entomol 58:522–524
    [Google Scholar]
  47. Stasiak K., Demattei M. V., Federici B. A., Bigot Y. 2000; Molecular analyses of the DNA polymerase gene confirms the classification of DpAV4 among the ascoviruses. J Gen Virol 81:3059–3072
    [Google Scholar]
  48. Suzuki M. G., Kang W. K., Maeda S. 2001; An element downstream of the transcription start site is required for activation of Bombyx mori nucleopolyhedrovirus bro-c promoter. Arch Virol 146:495–506
    [Google Scholar]
  49. Thompson J. D., Higgins D. G., Gibson J. J. 1994; clustal w. Improving the sensitivity of progressive multiple alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  50. Van Etten J. L., Meints R. H. 1999; Giant viruses infecting algae. Annu Rev Microbiol 53:447–494
    [Google Scholar]
  51. Vydelingum S., Baylis S. A., Bistow C., Smith G. L., Dixon L. K. 1993; Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. J Gen Virol 74:2125–2130
    [Google Scholar]
  52. Yanez R. J., Rodriguez J. M., Nogal M. L., Yuste L., Enriquez C., Rodriguez J. F., Vinuela E. 1995; Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:249–278
    [Google Scholar]
  53. Yang F., He J., Lin X., Pan D., Zhang X., Xu X. 2001; Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75:11811–11820
    [Google Scholar]
  54. Yozawa T., Kutish G. F., Afonso C. L., Lu Z., Rock D. L. 1994; Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology 202:997–1002
    [Google Scholar]
  55. Zemskov E. A., Kang W., Maeda S. 2000; Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virol 74:6784–6789
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19256-0
Loading
/content/journal/jgv/10.1099/vir.0.19256-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error