1887

Abstract

Epstein–Barr virus (EBV) infection is a multi-step process, first requiring virus binding to the host cell, followed by fusion of the viral envelope with the host cell plasma membrane. Efficient EBV entry into B cells requires, at the minimum, the interaction of the EBV-encoded glycoproteins gp350 with cellular CD21 and gp42 with MHC class II proteins. In this study, use of the cholesterol-binding drugs methyl--cyclodextrin and nystatin efficiently inhibited EBV infection of target Burkitt's lymphoma B-cell lines, indicating an important role for cholesterol and suggesting the involvement of lipid rafts in EBV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19252-0
2003-11-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir842987.html?itemId=/content/journal/jgv/10.1099/vir.0.19252-0&mimeType=html&fmt=ahah

References

  1. Anderson H. A., Hiltbold E. M., Roche P. A.. 2000; Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol1:156–162
    [Google Scholar]
  2. Bavari S., Bosio C. M., Wiegand E.. 7 other authors 2002; Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med195:593–602
    [Google Scholar]
  3. Bolard J.. 1986; How do the polyene macrolide antibiotics affect the cellular membrane properties?. Biochim Biophys Acta864:257–304
    [Google Scholar]
  4. Bouillon M., El Fakhry Y., Girouard J., Khalil H., Thibodeau J., Mourad W.. 2003; Lipid raft-dependent and -independent signaling through HLA-DR molecules. J Biol Chem278:7099–7107
    [Google Scholar]
  5. Brown D. A., Jacobson K.. 2001; Microdomains, lipid rafts and caveolae (San Feliu de Guixols, Spain, 19–24 May 2001). Traffic2:668–672
    [Google Scholar]
  6. Cherukuri A., Cheng P. C., Pierce S. K.. 2001; The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol167:163–172
    [Google Scholar]
  7. D'Addario M., Ahmad A., Morgan A., Menezes J.. 2000; Binding of the Epstein–Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF- α gene expression in monocytic cells via NF- κ B involving PKC, PI3-K and tyrosine kinases. J Mol Biol298:765–778
    [Google Scholar]
  8. Fuller A. O., Perez-Romero P.. 2002; Mechanisms of DNA virus infection: entry and early events. Front Biosci7:d390–406
    [Google Scholar]
  9. Guyader M., Kiyokawa E., Abrami L., Turelli P., Trono D.. 2002; Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J Virol76:10356–10364
    [Google Scholar]
  10. Haan K. M., Kwok W. W., Longnecker R., Speck P.. 2000; Epstein–Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J Virol74:2451–2454
    [Google Scholar]
  11. Haan K. M., Lee S. K., Longnecker R.. 2001; Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein–Barr virus-induced membrane fusion. Virology290:106–114
    [Google Scholar]
  12. Haddad R. S., Hutt-Fletcher L. M.. 1989; Depletion of glycoprotein gp85 from virosomes made with Epstein–Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. J Virol63:4998–5005
    [Google Scholar]
  13. Hernandez L. D., Hoffman L. R., Wolfsberg T. G., White J. M.. 1996; Virus–cell and cell–cell fusion. Annu Rev Cell Dev Biol12:627–661
    [Google Scholar]
  14. Hiltbold E. M., Poloso N. J., Roche P. A.. 2003; MHC class II–peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol170:1329–1338
    [Google Scholar]
  15. Huby R. D., Dearman R. J., Kimber I.. 1999; Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem274:22591–22596
    [Google Scholar]
  16. Kieff E., Rickinson A. B.. 2001; Epstein–Barr virus and its replication. In Fields Virology , 4th edn. pp 2511–2573 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  17. Klein U., Gimpl G., Fahrenholz F.. 1995; Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry34:13784–13793
    [Google Scholar]
  18. Kurzchalia T. V., Parton R. G.. 1999; Membrane microdomains and caveolae. Curr Opin Cell Biol11:424–431
    [Google Scholar]
  19. Li Q., Turk S. M., Hutt-Fletcher L. M.. 1995; The Epstein–Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol69:3987–3994
    [Google Scholar]
  20. Liebowitz D.. 1998; Pathogenesis of Epstein–Barr virus. In Human Tumor Viruses pp 175–199 Edited by McCance D. J.. Washington, DC: ASM Press;
    [Google Scholar]
  21. Longnecker R.. 1998; Molecular biology of Epstein–Barr virus. In Human Tumor Viruses pp 133–172 Edited by McCance D. J.. Washington, DC: ASM Press;
    [Google Scholar]
  22. Mañes S., del Real G., Martínez-A C.. 2003; Pathogens: raft hijackers. Nat Rev Immunol3:557–568
    [Google Scholar]
  23. Mastromarino P., Conti C., Goldoni P., Hauttecoeur B., Orsi N.. 1987; Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J Gen Virol68:2359–2369
    [Google Scholar]
  24. Nemerow G. R., Cooper N. R.. 1984; Early events in the infection of human B lymphocytes by Epstein–Barr virus: the internalization process. Virology132:186–198
    [Google Scholar]
  25. Nemerow G. R., Luxembourg A., Cooper N. R.. 1994; CD21/CR2: its role in EBV infection and immune function. Epstein–Barr Virus Rep1:59–64
    [Google Scholar]
  26. Ohtani Y., Irie T., Uekama K., Fukunaga K., Pitha J.. 1989; Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem186:17–22
    [Google Scholar]
  27. Popik W., Alce T. M., Au W. C.. 2002; Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J Virol76:4709–4722
    [Google Scholar]
  28. Rickinson A., Kieff E.. 2001; Epstein–Barr virus. In Fields Virology , 4th edn. pp 2575–2627 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  29. Rothberg K. G., Ying Y. S., Kamen B. A., Anderson R. G.. 1990; Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol111:2931–2938
    [Google Scholar]
  30. Scheiffele P., Roth M. G., Simons K.. 1997; Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J16:5501–5508
    [Google Scholar]
  31. Simons K., Ikonen E.. 1997; Functional rafts in cell membranes. Nature387:569–572
    [Google Scholar]
  32. Simons K., Toomre D.. 2000; Lipid rafts and signal transduction. Nat Rev Mol Cell Biol1:31–39
    [Google Scholar]
  33. Speck P., Longnecker R.. 1999; Epstein–Barr virus (EBV) infection visualized by EGFP expression demonstrates dependence on known mediators of EBV entry. Arch Virol144:1123–1137
    [Google Scholar]
  34. Speck P., Haan K. M., Longnecker R.. 2000; Epstein–Barr virus entry into cells. Virology277:1–5
    [Google Scholar]
  35. Spriggs M. K., Armitage R. J., Comeau M. R.. 7 other authors 1996; The extracellular domain of the Epstein–Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. J Virol70:5557–5563
    [Google Scholar]
  36. Tanner J., Weis J., Fearon D., Whang Y., Kieff E.. 1987; Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell50:203–213
    [Google Scholar]
  37. van der Goot F. G., Harder T.. 2001; Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol13:89–97
    [Google Scholar]
  38. Waarts B. L., Bittman R., Wilschut J.. 2002; Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J Biol Chem277:38141–38147
    [Google Scholar]
  39. Wang X., Hutt-Fletcher L. M.. 1998; Epstein–Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J Virol72:158–163
    [Google Scholar]
  40. Yee J. K., Miyanohara A., LaPorte P., Bouic K., Burns J. C., Friedmann T.. 1994; A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A91:9564–9568
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19252-0
Loading
/content/journal/jgv/10.1099/vir.0.19252-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error