1887

Abstract

Epstein–Barr virus (EBV) infection is a multi-step process, first requiring virus binding to the host cell, followed by fusion of the viral envelope with the host cell plasma membrane. Efficient EBV entry into B cells requires, at the minimum, the interaction of the EBV-encoded glycoproteins gp350 with cellular CD21 and gp42 with MHC class II proteins. In this study, use of the cholesterol-binding drugs methyl--cyclodextrin and nystatin efficiently inhibited EBV infection of target Burkitt's lymphoma B-cell lines, indicating an important role for cholesterol and suggesting the involvement of lipid rafts in EBV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19252-0
2003-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir842987.html?itemId=/content/journal/jgv/10.1099/vir.0.19252-0&mimeType=html&fmt=ahah

References

  1. Anderson, H. A., Hiltbold, E. M. & Roche, P. A. ( 2000; ). Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol 1, 156–162.[CrossRef]
    [Google Scholar]
  2. Bavari, S., Bosio, C. M., Wiegand, E. & 7 other authors ( 2002; ). Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195, 593–602.[CrossRef]
    [Google Scholar]
  3. Bolard, J. ( 1986; ). How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864, 257–304.[CrossRef]
    [Google Scholar]
  4. Bouillon, M., El Fakhry, Y., Girouard, J., Khalil, H., Thibodeau, J. & Mourad, W. ( 2003; ). Lipid raft-dependent and -independent signaling through HLA-DR molecules. J Biol Chem 278, 7099–7107.[CrossRef]
    [Google Scholar]
  5. Brown, D. A. & Jacobson, K. ( 2001; ). Microdomains, lipid rafts and caveolae (San Feliu de Guixols, Spain, 19–24 May 2001). Traffic 2, 668–672.[CrossRef]
    [Google Scholar]
  6. Cherukuri, A., Cheng, P. C. & Pierce, S. K. ( 2001; ). The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol 167, 163–172.[CrossRef]
    [Google Scholar]
  7. D'Addario, M., Ahmad, A., Morgan, A. & Menezes, J. ( 2000; ). Binding of the Epstein–Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-α gene expression in monocytic cells via NF-κB involving PKC, PI3-K and tyrosine kinases. J Mol Biol 298, 765–778.[CrossRef]
    [Google Scholar]
  8. Fuller, A. O. & Perez-Romero, P. ( 2002; ). Mechanisms of DNA virus infection: entry and early events. Front Biosci 7, d390–406.[CrossRef]
    [Google Scholar]
  9. Guyader, M., Kiyokawa, E., Abrami, L., Turelli, P. & Trono, D. ( 2002; ). Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J Virol 76, 10356–10364.[CrossRef]
    [Google Scholar]
  10. Haan, K. M., Kwok, W. W., Longnecker, R. & Speck, P. ( 2000; ). Epstein–Barr virus entry utilizing HLA-DP or HLA-DQ as a coreceptor. J Virol 74, 2451–2454.[CrossRef]
    [Google Scholar]
  11. Haan, K. M., Lee, S. K. & Longnecker, R. ( 2001; ). Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein–Barr virus-induced membrane fusion. Virology 290, 106–114.[CrossRef]
    [Google Scholar]
  12. Haddad, R. S. & Hutt-Fletcher, L. M. ( 1989; ). Depletion of glycoprotein gp85 from virosomes made with Epstein–Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. J Virol 63, 4998–5005.
    [Google Scholar]
  13. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G. & White, J. M. ( 1996; ). Virus–cell and cell–cell fusion. Annu Rev Cell Dev Biol 12, 627–661.[CrossRef]
    [Google Scholar]
  14. Hiltbold, E. M., Poloso, N. J. & Roche, P. A. ( 2003; ). MHC class II–peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol 170, 1329–1338.[CrossRef]
    [Google Scholar]
  15. Huby, R. D., Dearman, R. J. & Kimber, I. ( 1999; ). Intracellular phosphotyrosine induction by major histocompatibility complex class II requires co-aggregation with membrane rafts. J Biol Chem 274, 22591–22596.[CrossRef]
    [Google Scholar]
  16. Kieff, E. & Rickinson, A. B. ( 2001; ). Epstein–Barr virus and its replication. In Fields Virology, 4th edn, pp. 2511–2573. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  17. Klein, U., Gimpl, G. & Fahrenholz, F. ( 1995; ). Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784–13793.[CrossRef]
    [Google Scholar]
  18. Kurzchalia, T. V. & Parton, R. G. ( 1999; ). Membrane microdomains and caveolae. Curr Opin Cell Biol 11, 424–431.[CrossRef]
    [Google Scholar]
  19. Li, Q., Turk, S. M. & Hutt-Fletcher, L. M. ( 1995; ). The Epstein–Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol 69, 3987–3994.
    [Google Scholar]
  20. Liebowitz, D. ( 1998; ). Pathogenesis of Epstein–Barr virus. In Human Tumor Viruses, pp. 175–199. Edited by D. J. McCance. Washington, DC: ASM Press.
  21. Longnecker, R. ( 1998; ). Molecular biology of Epstein–Barr virus. In Human Tumor Viruses, pp. 133–172. Edited by D. J. McCance. Washington, DC: ASM Press.
  22. Mañes, S., del Real, G. & Martínez-A, C. ( 2003; ). Pathogens: raft hijackers. Nat Rev Immunol 3, 557–568.[CrossRef]
    [Google Scholar]
  23. Mastromarino, P., Conti, C., Goldoni, P., Hauttecoeur, B. & Orsi, N. ( 1987; ). Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J Gen Virol 68, 2359–2369.[CrossRef]
    [Google Scholar]
  24. Nemerow, G. R. & Cooper, N. R. ( 1984; ). Early events in the infection of human B lymphocytes by Epstein–Barr virus: the internalization process. Virology 132, 186–198.[CrossRef]
    [Google Scholar]
  25. Nemerow, G. R., Luxembourg, A. & Cooper, N. R. ( 1994; ). CD21/CR2: its role in EBV infection and immune function. Epstein–Barr Virus Rep 1, 59–64.
    [Google Scholar]
  26. Ohtani, Y., Irie, T., Uekama, K., Fukunaga, K. & Pitha, J. ( 1989; ). Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem 186, 17–22.[CrossRef]
    [Google Scholar]
  27. Popik, W., Alce, T. M. & Au, W. C. ( 2002; ). Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J Virol 76, 4709–4722.[CrossRef]
    [Google Scholar]
  28. Rickinson, A. & Kieff, E. ( 2001; ). Epstein–Barr virus. In Fields Virology, 4th edn, pp. 2575–2627. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  29. Rothberg, K. G., Ying, Y. S., Kamen, B. A. & Anderson, R. G. ( 1990; ). Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 111, 2931–2938.[CrossRef]
    [Google Scholar]
  30. Scheiffele, P., Roth, M. G. & Simons, K. ( 1997; ). Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16, 5501–5508.[CrossRef]
    [Google Scholar]
  31. Simons, K. & Ikonen, E. ( 1997; ). Functional rafts in cell membranes. Nature 387, 569–572.[CrossRef]
    [Google Scholar]
  32. Simons, K. & Toomre, D. ( 2000; ). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31–39.
    [Google Scholar]
  33. Speck, P. & Longnecker, R. ( 1999; ). Epstein–Barr virus (EBV) infection visualized by EGFP expression demonstrates dependence on known mediators of EBV entry. Arch Virol 144, 1123–1137.[CrossRef]
    [Google Scholar]
  34. Speck, P., Haan, K. M. & Longnecker, R. ( 2000; ). Epstein–Barr virus entry into cells. Virology 277, 1–5.[CrossRef]
    [Google Scholar]
  35. Spriggs, M. K., Armitage, R. J., Comeau, M. R. & 7 other authors ( 1996; ). The extracellular domain of the Epstein–Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. J Virol 70, 5557–5563.
    [Google Scholar]
  36. Tanner, J., Weis, J., Fearon, D., Whang, Y. & Kieff, E. ( 1987; ). Epstein–Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203–213.[CrossRef]
    [Google Scholar]
  37. van der Goot, F. G. & Harder, T. ( 2001; ). Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol 13, 89–97.[CrossRef]
    [Google Scholar]
  38. Waarts, B. L., Bittman, R. & Wilschut, J. ( 2002; ). Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 277, 38141–38147.[CrossRef]
    [Google Scholar]
  39. Wang, X. & Hutt-Fletcher, L. M. ( 1998; ). Epstein–Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. J Virol 72, 158–163.
    [Google Scholar]
  40. Yee, J. K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C. & Friedmann, T. ( 1994; ). A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91, 9564–9568.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19252-0
Loading
/content/journal/jgv/10.1099/vir.0.19252-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error