1887

Abstract

Creutzfeldt–Jakob disease can develop in subjects given a cadaveric dura mater graft (dCJD). This disease has a phenotypic heterogeneity despite the lack of genetic variation. Numerous plaque-type prion protein (PrP) deposits are found in the brain of some but not all subjects; hence, there may be two subtypes of this clinical entity. To validate dCJD subtypes further, we carried out a larger-scale clinicopathological analysis and typing of protease-resistant PrP (PrP) in dCJD cases. Cases with plaque-type PrP deposits (p-dCJD) were shown to be distinct from those without PrP plaques (np-dCJD), from several clinicopathological aspects. Analysis of PrP revealed that, while the major PrP species from both subtypes was of 21 kDa after deglycosylation (type 1 PrP), a C-terminal PrP fragment of 11–12 kDa (fPrP11–12) was associated with np-dCJD but not with p-dCJD. The disease type-specific association of fPrP11–12 was also observed in subjects with other prion diseases. An fPrP11–12-like C-terminal PrP fragment was detected in brain lysates from patients associated with fPrP11–12, but not from patients or normal subjects unassociated with fPrP11–12. Results indicated that fPrP was produced by CJD-associated processes . The present data provide several lines of evidence that support the need for subtyping of dCJD and contribute to the understanding of the processing of disease-specific PrP species. The unique relationship of fPrP11–12 with CJD phenotype supports the view that the phenotypic heterogeneity of CJD is related to the formation of different types of disease-specific PrP and fragments thereof.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19236-0
2003-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842885.html?itemId=/content/journal/jgv/10.1099/vir.0.19236-0&mimeType=html&fmt=ahah

References

  1. Brown, P., Preece, M., Brandel, J. P. & 12 other authors ( 2000; ). Iatrogenic Creutzfeldt–Jakob disease at the millennium. Neurology 55, 1075–1081.[CrossRef]
    [Google Scholar]
  2. Capellari, S., Parchi, P., Russo, C. M., Sanford, J., Sy, M.-S., Gambetti, P. & Petersen, R. B. ( 2000; ). Effect of the E200K mutation on prion protein metabolism: comparative study of a cell model and human brain. Am J Pathol 157, 613–622.[CrossRef]
    [Google Scholar]
  3. Chen, S. G., Teplow, D. B., Parchi, P., Teller, J. K., Gambetti, P. & Autilio-Gambetti, L. ( 1995; ). Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270, 19173–19180.[CrossRef]
    [Google Scholar]
  4. Collinge, J., Sidle, K. C. L., Meads, J., Ironside, J. & Hill, A. F. ( 1996; ). Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690.[CrossRef]
    [Google Scholar]
  5. de Silva, R., Ironside, J. W., McCardle, L. & 7 other authors ( 1994; ). Neuropathological phenotype and prion protein genotype: correlation in sporadic Creutzfeldt–Jakob disease. Neurosci Lett 179, 50–52.[CrossRef]
    [Google Scholar]
  6. Doh-ura, K., Kitamoto, T., Sakaki, Y. & Tateishi, J. ( 1991; ). CJD discrepancy. Nature 353, 801–802.
    [Google Scholar]
  7. Fischer, M., Rülicke, T., Raeber, A., Sailer, A., Moser, M., Oesch, B., Brandner, S., Aguzzi, A. & Weissmann, C. ( 1996; ). Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15, 1255–1264.
    [Google Scholar]
  8. Hoshi, K., Yoshino, H., Urata, J., Nakamura, Y., Yanagawa, H. & Sato, T. ( 2000; ). Creutzfeldt–Jakob disease associated with cadaveric dura mater grafts in Japan. Neurology 55, 718–721.[CrossRef]
    [Google Scholar]
  9. Kascsak, R. J., Rubenstein, R., Merz, P. A., Tonna-DeMasi, M., Fersko, R., Carp, R. I., Wisniewski, H. M. & Diringer, H. ( 1987; ). Mouse polyclonal and monoclonal antibody to scrapie-associated fibril protein. J Virol 61, 3688–3693.
    [Google Scholar]
  10. Kimura, K., Nonaka, A., Tashiro, H., Yaginuma, M., Shimokawa, R., Okeda, R. & Yamada, M. ( 2001; ). Atypical form of dural graft associated Creutzfeldt–Jakob disease: report of a postmortem case with review of the literature. J Neurol Neurosurg Psychiatry 70, 696–699.[CrossRef]
    [Google Scholar]
  11. Kitamoto, T. & Tateishi, J. ( 1994; ). Human prion diseases with variant prion protein. Philos Trans R Soc Lond Ser B Biol Sci 343, 391–398.[CrossRef]
    [Google Scholar]
  12. Kitamoto, T., Shin, R.-W., Doh-ura, K., Tomokane, N., Miyazono, M., Muramoto, T. & Tateishi, J. ( 1992; ). Abnormal isoform of prion protein accumulates in the synaptic structures of the central nervous system in patients with Creutzfeldt–Jakob disease. Am J Pathol 140, 1285–1294.
    [Google Scholar]
  13. Kitamoto, T., Mohri, S., Ironside, J. W. & 9 other authors ( 2002; ). Follicular dendritic cell of the knock-in mouse provides a new bioassay for human prions. Biochem Biophys Res Commun 294, 280–286.[CrossRef]
    [Google Scholar]
  14. Kopp, N., Streichenberger, N., Deslys, J. P., Laplanche, J. L. & Chazot, G. ( 1996; ). Creutzfeldt–Jakob disease in a 52-year-old woman with florid plaques. Lancet 348, 1239–1240.
    [Google Scholar]
  15. Lane, K. L., Brown, P., Howell, D. N., Crain, B. J., Hulette, C. M., Burger, P. C. & DeArmond, S. J. ( 1994; ). Creutzfeldt–Jakob disease in a pregnant woman with an implanted dura mater graft. Neurosurgery 34, 737–739.[CrossRef]
    [Google Scholar]
  16. Lang, C. J. G., Heckmann, J. G. & Neundörfer, B. ( 1998; ). Creutzfeldt–Jakob disease via dural and corneal transplants. J Neurol Sci 160, 128–139.[CrossRef]
    [Google Scholar]
  17. Martin, J. J. ( 1975; ). Thalamic degenerations. In Handbook of Clinical Neurology, vol. 21, pp. 587–604. Edited by P. J. Vinken & G. W. Bruyn. Amsterdam: North-Holland.
  18. Miyashita, K., Inuzuka, T., Kondo, H. & 7 other authors ( 1991; ). Creutzfeldt–Jakob disease in a patient with a cadaveric dural graft. Neurology 41, 940–941.[CrossRef]
    [Google Scholar]
  19. Miyazono, M., Kitamoto, T., Doh-ura, K., Iwaki, T. & Tateishi, J. ( 1992; ). Creutzfeldt–Jakob disease with codon 129 polymorphism (valine): a comparative study of patients with codon 102 point mutation or without mutations. Acta Neuropathol 84, 349–354.
    [Google Scholar]
  20. Muramoto, T., Tanaka, T., Kitamoto, N., Sano, C., Hayashi, Y., Kutomi, T., Yutani, C. & Kitamoto, T. ( 2000; ). Analyses of Gerstmann–Straussler syndrome with 102Leu219Lys using monoclonal antibodies that specifically detect human prion protein with 219Glu. Neurosci Lett 288, 179–182.[CrossRef]
    [Google Scholar]
  21. Parchi, P., Castellani, R., Capellari, S. & 9 other authors ( 1996; ). Molecular basis of phenotypic variability in sporadic Creutzfeldt–Jakob disease. Ann Neurol 39, 767–778.[CrossRef]
    [Google Scholar]
  22. Parchi, P., Capellari, S., Chen, S. G. & 8 other authors ( 1997; ). Typing prion isoforms. Nature 386, 232–234.[CrossRef]
    [Google Scholar]
  23. Parchi, P., Chen, S. G., Brown, P. & 9 other authors ( 1998; ). Different patterns of truncated prion protein fragments correlate with distinct phenotypes in P102L Gerstmann–Sträussler–Scheinker disease. Proc Natl Acad Sci U S A 95, 8322–8327.[CrossRef]
    [Google Scholar]
  24. Parchi, P., Giese, A., Capellari, S. & 15 other authors ( 1999; ). Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46, 224–233.[CrossRef]
    [Google Scholar]
  25. Parchi, P., Zou, W., Wang, W. & 10 other authors ( 2000; ). Genetic influence on the structural variations of the abnormal prion protein. Proc Natl Acad Sci U S A 97, 10168–10172.[CrossRef]
    [Google Scholar]
  26. Radbauer, C., Hainfellner, J. A., Gaudernak, T., Deecke, L. & Budka, H. ( 1998; ). Creutzfeldt–Jakob disease in a dura transplant recipient: first observation in Austria. Wien Klin Wochenschr 110, 496–500.
    [Google Scholar]
  27. Shimizu, S., Hoshi, K., Muramoto, T., Homma, M., Ironside, J., Kuzuhara, S., Sato, T., Yamamoto, T. & Kitamoto, T. ( 1999; ). Creutzfeldt–Jakob disease with florid-type plaques after cadaveric dura mater grafting. Arch Neurol 56, 357–362.[CrossRef]
    [Google Scholar]
  28. Shmerling, D., Hegyi, I., Fischer, M. & 10 other authors ( 1998; ). Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214.[CrossRef]
    [Google Scholar]
  29. Supattapone, S., Muramoto, T., Legname, G., Mehlhorn, I., Cohen, F. E., DeArmond, S. J., Prusiner, S. B. & Scott, M. R. ( 2001; ). Identification of two prion protein regions that modify scrapie incubation time. J Virol 75, 1408–1413.[CrossRef]
    [Google Scholar]
  30. Tagliavini, F., Prelli, F., Ghiso, J., Bugiani, O., Serban, D., Prusiner, S. B., Farlow, M. R., Ghetti, B. & Frangione, B. ( 1991; ). Amyloid protein of Gerstmann–Sträussler–Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58. EMBO J 10, 513–519.
    [Google Scholar]
  31. Tagliavini, F., Lievens, P. M.-J., Tranchant, C. & 12 other authors ( 2001; ). A 7-kDa prion protein (PrP) fragment, an integral component of the PrP region required for infectivity, is the major amyloid protein in Gerstmann–Sträussler–Scheinker disease A117V. J Biol Chem 276, 6009–6015.[CrossRef]
    [Google Scholar]
  32. Takahashi, S., Tateishi, J., Taguchi, Y., Hirade, S., Inoue, H., Matsui, Y. & Furukawa, H. ( 1997; ). Creutzfeldt–Jakob disease with a widespread presence of kuru-type plaques after cadaveric dural graft replacement: an autopsy case. Rinsho Shinkeigaku 37, 824–828 (in Japanese).
    [Google Scholar]
  33. Takashima, S., Tateishi, J., Taguchi, Y. & Inoue, H. ( 1997; ). Creutzfeldt–Jakob disease with florid plaques after cadaveric dural graft in a Japanese woman. Lancet 350, 865–866.
    [Google Scholar]
  34. Thadani, V., Penar, P. L., Partington, J., Kalb, R., Janssen, R., Schonberger, L. B., Rabkin, C. S. & Prichard, J. W. ( 1988; ). Creutzfeldt–Jakob disease probably acquired from a cadaveric dura mater graft. J Neurosurg 69, 766–769.[CrossRef]
    [Google Scholar]
  35. Yamada, S., Aiba, T., Endo, Y., Hara, M., Kitamoto, T. & Tateishi, J. ( 1994; ). Creutzfeldt–Jakob disease transmitted by a cadaveric dura mater graft. Neurosurgery 34, 740–743.[CrossRef]
    [Google Scholar]
  36. Yamada, M., Itoh, Y., Suematsu, N., Matsushita, M. & Otomo, E. ( 1997; ). Panencephalopathic type of Creutzfeldt–Jakob disease associated with cadaveric dura mater graft. J Neurol Neurosurg Psychiatry 63, 524–527.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19236-0
Loading
/content/journal/jgv/10.1099/vir.0.19236-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error