1887

Abstract

The rat cytomegalovirus (RCMV) R33 and R78 genes are conserved within members of the subfamily and encode proteins (pR33 and pR78, respectively) that show sequence similarity with G protein-coupled receptors. Previously, the biological relevance of these genes was demonstrated by the finding that R33- and R78-deleted RCMV strains are severely attenuated . In addition, R78-deleted strains were found to replicate less efficiently in cell culture. To monitor of the expression of R33- and R78-encoded proteins, recombinant RCMV strains, designated RCMV33G and RCMV78G, were generated. These recombinants expressed enhanced green fluorescent protein (EGFP)-tagged versions of pR33 and pR78 instead of native pR33 and pR78, respectively. Here it is reported that, although RCMV33G replicates as efficiently as wt virus in rat embryo fibroblast cultures, strain RCMV78G produces virus titres that are 3- to 4-fold lower than wt RCMV in the culture medium. This result indicates that the pR78-EGFP protein, as expressed by RCMV78G, does not completely functionally replace its native counterpart (pR78) . Interestingly, in infected rats, infectious RCMV33G was produced in significantly lower amounts than infectious wt RCMV, as well as RCMV78G, in the salivary glands. Conversely, although RCMV33G replicated to similar levels as wt virus in the spleen, both RCMV78G and an R78 knock-out strain (RCMVΔR78a) replicated poorly in this organ. Together, these data indicate that R78 is crucial for the production of infectious RCMV in the spleen of infected rats.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19227-0
2003-09-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842517.html?itemId=/content/journal/jgv/10.1099/vir.0.19227-0&mimeType=html&fmt=ahah

References

  1. Bahr U., Darai G.. 2001; Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J Virol75:4854–4870
    [Google Scholar]
  2. Beisser P. S., Vink C., Van Dam J. G., Grauls G., Vanherle S. J., Bruggeman C. A.. 1998; The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol72:2352–2363
    [Google Scholar]
  3. Beisser P. S., Grauls G., Bruggeman C. A., Vink C.. 1999; Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium inducing mutant strain. J Virol73:7218–7230
    [Google Scholar]
  4. Beisser P. S., Kloover J. S., Grauls G. E., Blok M. J., Bruggeman C. A., Vink C.. 2000; The r144 major histocompatibility complex class I-like gene of rat cytomegalovirus is dispensable for both acute and long-term infection in the immunocompromised host. J Virol74:1045–1050
    [Google Scholar]
  5. Beuken E., Grauls G., Bruggeman C. A., Vink C.. 1999; The rat cytomegalovirus R32 gene encodes a virion-associated protein that elicits a strong humoral immune response in infected rats. J Gen Virol80:2719–2728
    [Google Scholar]
  6. Broers J. L., Machiels B. M., van Eys G. J., Kuijpers H. J., Manders E. M., van Driel R., Ramaekers F. C.. 1999; Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins. J Cell Sci112:3463–3475
    [Google Scholar]
  7. Brown T.. 1993; Analysis of DNA sequences by blotting and hybridization. In Current Protocols in Molecular Biology pp. 4.2.1–4.2.15 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: John Wiley & Sons;
    [Google Scholar]
  8. Brown T., Mackey K.. 1997; Analysis of RNA by Northern blot and slot blot hybridization. In Current Protocols in Molecular Biology pp. 4.9.1–4.9.16 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: John Wiley & Sons;
    [Google Scholar]
  9. Bruggeman C. A., Meijer H., Dormans P. H. J., Debie W. M., Grauls G. E. L. M., van Boven C. P. A.. 1982; Isolation of a cytomegalovirus-like agent from wild rats. Arch Virol73:231–241
    [Google Scholar]
  10. Bruggeman C. A., Meijer H., Bosman F., van Boven C. P. A.. 1985; Biology of rat cytomegalovirus infection. Intervirology24:1–9
    [Google Scholar]
  11. Chee M. S., Bankier A. T., Beck S.. & 12 other authors (1990a). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol154:125–169
    [Google Scholar]
  12. Chee M. S., Satchwell S. C., Preddie E., Weston K. M., Barrell B. G.. 1990b; Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature344:774–777
    [Google Scholar]
  13. Damoiseaux J. G. M. C., Döpp E. A., Calame W., Chao D., MacPherson G. G., Dijkstra C. D.. 1994; Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology83:140–147
    [Google Scholar]
  14. Davis-Poynter N. J., Lynch D. M., Vally H., Shellam G. R., Rawlinson W. D., Barrell B. G., Farrell H. E.. 1997; Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol71:1521–1529
    [Google Scholar]
  15. Elliot E., O'Hare P.. 1999; Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol73:4110–4119
    [Google Scholar]
  16. Gompels U., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E., Efstathiou S., Craxton M., Macaulay H. A.. 1995; The DNA sequence of human herpesvirus-6: structure, coding content and genome evolution. Virology209:29–51
    [Google Scholar]
  17. Gruijthuijsen Y. K., Casarosa P., Kaptein S. J. F., Broers J. L., Leurs R., Bruggeman C. A., Smit M. J., Vink C.. 2002; The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol76:1328–1338
    [Google Scholar]
  18. Isegawa Y., Ping Z., Nakano K., Sugimoto N., Yamanishi K.. 1998; Human herpesvirus 6 open reading frame U12 encodes a functional β-chemokine receptor. J Virol72:6104–6112
    [Google Scholar]
  19. Kaptein S. J. F., Beuken E., Grauls G. E. L. M., Bruggeman C. A., Vink C.. 2001; Rat cytomegalovirus open reading frame R44 is an early-late gene that encodes a nuclear protein. Arch Virol146:2211–2218
    [Google Scholar]
  20. Liu Y., Biegalke B. J.. 2001; Characterization of a cluster of late genes of guinea pig cytomegalovirus. Virus Genes23:247–256
    [Google Scholar]
  21. Lorentzen E. U., Eing B. R., Hafezi W., Manservigi R., Kuhn J. E.. 2001; Replication-competent herpes simplex virus type 1 mutant expressing an autofluorescent glycoprotein H fusion protein. Intervirology44:232–242
    [Google Scholar]
  22. Margulies B. J., Browne H., Gibson W.. 1996; Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology225:111–125
    [Google Scholar]
  23. Meijer H., Dreesen J. C., van Boven C. P.. 1986; Molecular cloning and restriction endonuclease mapping of the rat cytomegalovirus genome. J Gen Virol67:1327–1342
    [Google Scholar]
  24. Milne R. S., Mattick C., Nicholson L., Devaraj P., Alcami A., Gompels U. A.. 2000; RANTES binding and down-regulation by a novel human herpesvirus-6 β chemokine receptor. J Immunol164:2396–2404
    [Google Scholar]
  25. Neubauer A., Rudolph J., Brandmüller C., Just F. T., Osterrieder N.. 2002; The equine herpesvirus 1 UL34 gene product is involved in an early step in virus egress and can be efficiently replaced by a UL34–GFP fusion protein. Virology300:189–204
    [Google Scholar]
  26. Nicholas J.. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus. J Virol70:5975–5989
    [Google Scholar]
  27. Oliveira S. A., Shenk T. E.. 2001; Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci U S A98:3237–3242
    [Google Scholar]
  28. Rawlinson W. D., Farrell H. E., Barrell B. G.. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol70:8833–8849
    [Google Scholar]
  29. Rios C. D., Jordan B. A., Gomes I., Devi L. A.. 2001; G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther92:71–87
    [Google Scholar]
  30. Sibley D. R., Lefkowitz R. J.. 1985; Molecular mechanisms of receptor desensitization using the β-adrenergic receptor-coupled adenylate cyclase system as a model. Nature317:124–129
    [Google Scholar]
  31. Stals F. S., Bosman F., van Boven C. P., Bruggeman C. A.. 1990; An animal model for therapeutic intervention studies of CMV infection in the immunocompromised host. Arch Virol114:91–107
    [Google Scholar]
  32. Tsien R. Y.. 1998; The green fluorescent protein. Annu Rev Biochem67:509–544
    [Google Scholar]
  33. Vink C., Beuken E., Bruggeman C. A.. 1996; Structure of the rat cytomegalovirus genome termini. J Virol70:5221–5229
    [Google Scholar]
  34. Vink C., Beuken E., Bruggeman C. A.. 2000; Complete DNA sequence of the rat cytomegalovirus genome. J Virol74:7656–7665
    [Google Scholar]
  35. Waldhoer M., Kledal T. N., Farrell H., Schwartz T. W.. 2002; Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol76:8161–8168
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19227-0
Loading
/content/journal/jgv/10.1099/vir.0.19227-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error