1887

Abstract

Previously reported findings by our group showed that non-structural protein 3 (NS3) of Japanese encephalitis virus (JEV) was localized mainly in the JEV-induced convoluted membrane (CM), which has been proposed to originate from rough endoplasmic reticulum (rER), Golgi apparatus or the -Golgi network (TGN), and serves as a reservoir for viral proteins during virus assembly. Earlier findings indicated that NS3 of Kunjin virus interacts with microtubules. In addition, one of the Golgi-associated proteins, tumour susceptibility protein 101 (TSG101), associates with microtubules and is required for budding of retroviral particles. To clarify the association of NS3 with microtubules or with TSG101 during JEV assembly, we applied immunofluorescence, co-immunoprecipitation and immunoelectron microscopic methods. Virus infection, as well as transfection with an NS2B–NS3 expression plasmid, induced microtubule rearrangement. When cells were treated with colchicine, which interferes with microtubule polymerization, NS3 still associated with tubulin and TSG101. Furthermore, tubulin and TSG101 were co-localized with NS3 in the CM by immunogold labelling. Our observations indicate that microtubules and TSG101 associate with NS3, which is incorporated into the JEV-induced structure during JEV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19201-0
2003-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842795.html?itemId=/content/journal/jgv/10.1099/vir.0.19201-0&mimeType=html&fmt=ahah

References

  1. Beachy, R. N. & Heinlein, M. ( 2000; ). Role of P30 in replication and spread of TMV. Traffic 1, 540–544.[CrossRef]
    [Google Scholar]
  2. Bose, S., Malur, A. & Banerjee, A. K. ( 2001; ). Polarity of human parainfluenza virus type 3 infection in polarized human lung epithelial A549 cells: role of microfilament and microtubule. J Virol 75, 1984–1989.[CrossRef]
    [Google Scholar]
  3. Cassimeris, L. ( 2002; ). The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14, 18–24.[CrossRef]
    [Google Scholar]
  4. Chang, Y. S., Liao, C. L., Tsao, C. H., Chen, M. C., Liu, C. I., Chen, L. K. & Lin, Y. L. ( 1999; ). Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. J Virol 73, 6257–6264.
    [Google Scholar]
  5. Chen, L. K., Lin, Y. L., Liao, C. L., Lin, C. G., Huang, Y. L., Yeh, C. T., Lai, S. C., Jan, J. T. & Chin, C. ( 1996; ). Generation and characterization of organ-tropism mutants of Japanese encephalitis virus in vivo and in vitro. Virology 223, 79–88.[CrossRef]
    [Google Scholar]
  6. Chen, C. J., Kuo, M. D., Chien, L. J., Hsu, S. L., Wang, Y. M. & Lin, J. H. ( 1997; ). RNA–protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71, 3466–3473.
    [Google Scholar]
  7. Chu, J. J. H. & Ng, M. L. ( 2002; ). Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67, 127–136.[CrossRef]
    [Google Scholar]
  8. Dupré, S., Volland, C. & Haguenauer-Tsapis, R. ( 2001; ). Membrane transport: ubiquitylation in endosomal sorting. Curr Biol 11, R932–934.[CrossRef]
    [Google Scholar]
  9. Elliott, G. & O'Hare, P. ( 1998; ). Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. J Virol 72, 6448–6455.
    [Google Scholar]
  10. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W. & 9 other authors ( 2001; ). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65.[CrossRef]
    [Google Scholar]
  11. Guha, S., Manna, T. K., Das, K. P. & Bhattacharyya, B. ( 1998; ). Chaperone-like activity of tubulin. J Biol Chem 273, 30077–30080.[CrossRef]
    [Google Scholar]
  12. Hollinshead, M., Rodger, G., Van Eijl, H., Law, M., Hollinshead, R., Vaux, D. J. & Smith, G. L. ( 2001; ). Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154, 389–402.[CrossRef]
    [Google Scholar]
  13. Leary, K. & Blair, C. D. ( 1980; ). Sequential events in the morphogenesis of Japanese encephalitis virus. J Ultrastruct Res 72, 123–129.[CrossRef]
    [Google Scholar]
  14. Li, L. & Cohen, S. N. ( 1996; ). Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319–329.[CrossRef]
    [Google Scholar]
  15. Li, H., Clum, S., You, S., Ebner, K. E. & Padmanabhan, R. ( 1999; ). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73, 3108–3116.
    [Google Scholar]
  16. Liu, W. J., Sedlak, P. L., Kondratieva, N. & Khromykh, A. A. ( 2002; ). Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 76, 10766–10775.[CrossRef]
    [Google Scholar]
  17. Mackenzie, J. M. & Westaway, E. G. ( 2001; ). Assembly and maturation of flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75, 10787–10799.[CrossRef]
    [Google Scholar]
  18. Mackenzie, J. M., Jones, M. K. & Young, P. R. ( 1996; ). Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220, 232–240.[CrossRef]
    [Google Scholar]
  19. Mackenzie, J. M., Khromykh, A. A., Jones, M. K. & Westaway, E. G. ( 1998; ). Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245, 203–215.[CrossRef]
    [Google Scholar]
  20. Mackenzie, J. M., Jones, M. K. & Westaway, E. G. ( 1999; ). Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73, 9555–9567.
    [Google Scholar]
  21. Manna, T., Sarkar, T., Poddar, A., Roychowdhury, M., Das, K. P. & Bhattacharyya, B. ( 2001; ). Chaperone-like activity of tubulin: binding and reactivity of unfolded substrate enzymes. J Biol Chem 276, 39742–39747.[CrossRef]
    [Google Scholar]
  22. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. ( 2001; ). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7, 1313–1319.[CrossRef]
    [Google Scholar]
  23. Murthy, H. M. K., Clum, S. & Padmanabhan, R. ( 1999; ). Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J Biol Chem 274, 5573–5580.[CrossRef]
    [Google Scholar]
  24. Murti, K. G., Smith, H. T. & Fried, V. A. ( 1988; ). Ubiquitin is a component of the microtubule network. Proc Natl Acad Sci U S A 85, 3019–3023.[CrossRef]
    [Google Scholar]
  25. Ng, M. L. & Hong, S. S. ( 1989; ). Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 with microtubules. Arch Virol 106, 103–120.[CrossRef]
    [Google Scholar]
  26. Parker, J. S. L., Broering, T. J., Kim, J., Higgins, D. E. & Nibert, M. L. ( 2002; ). Reovirus core protein μ2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J Virol 76, 4483–4496.[CrossRef]
    [Google Scholar]
  27. Ploubidou, A., Moreau, V., Ashman, K., Reckmann, I., Gonzalez, C. & Way, M. ( 2000; ). Vaccinia virus infection disrupts microtubules organization and centrosome function. EMBO J 19, 3932–3944.[CrossRef]
    [Google Scholar]
  28. Pornillos, O., Alam, S. L., Rich, R. L., Myszka, D. G., Davis, D. R. & Sundquist, W. I. ( 2002; ). Structure and functional interactions of the Tsg101 UEV domain. EMBO J 21, 2397–2406.[CrossRef]
    [Google Scholar]
  29. Rice, C. M. ( 1996; ). Flaviviridae: the viruses and their replication. In Fields Virology, 3rd edn, pp. 931–959. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  30. Thyberg, J. & Moskalewski, S. ( 1999; ). Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246, 263–279.[CrossRef]
    [Google Scholar]
  31. Utama A. , Shimizu, H., Morikawa, S., Hasebe, F., Morita, K., Igarashi, A., Hatsu, M., Takamizawa, K. & Miyamura, T. ( 2000; ). Identification and characterization of the RNA helicase activity of Japanese encephalitis virus NS3 protein. FEBS Lett 465, 74–78.[CrossRef]
    [Google Scholar]
  32. VerPlank, L., Bouamr, F., LaGrassa, T. J., Agresta, B., Kikonyogo, A., Leis, J. & Carter, C. A. ( 2001; ). Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc Natl Acad Sci U S A 98, 7724–7729.[CrossRef]
    [Google Scholar]
  33. Walter, I. & Nowotny, N. ( 1999; ). Equine herpes virus type 1 (EHV-1) infection induces alterations in the cytoskeleton of Vero cells but not apoptosis. Arch Virol 144, 1827–1836.[CrossRef]
    [Google Scholar]
  34. Wang, J. J., Liao, C. L., Chiou, Y. W., Chiou, C. T., Huang, Y. L. & Chen, L. K. ( 1997; ). Ultrastructure and localization of E proteins in cultured neuron cells infected with Japanese encephalitis virus. Virology 238, 30–39.[CrossRef]
    [Google Scholar]
  35. Wang, J. J., Liao, C. L., Yang, C. I., Lin, Y. L., Chiou, C. T. & Chen, L. K. ( 1998; ). Localizations of NS3 and E proteins in mouse brain infected with mutant strain of Japanese encephalitis virus. Arch Virol 143, 2353–2369.[CrossRef]
    [Google Scholar]
  36. Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K. & Khromykh, A. A. ( 1997; ). Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71, 6650–6661.
    [Google Scholar]
  37. Xie, W., Li, L. & Cohen, S. N. ( 1998; ). Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic nuclear abnormalities associated with TSG101 deficiency. Proc Natl Acad Sci U S A 95, 1595–1600.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19201-0
Loading
/content/journal/jgv/10.1099/vir.0.19201-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error