1887

Abstract

The expression of the Epstein–Barr virus (EBV) HI-A rightward transcripts (BARTs) as well as the putative BART-encoded BARF0 and RK-BARF0 proteins in various EBV-associated malignancies was investigated. RT-PCRs specific for the different splice variants of the BARTs and both a nucleic acid sequence-based amplification assay and an RT-PCR specific for the BARF0 ORF were used. Abundant transcription of BARTs was found in EBV-associated Hodgkin's lymphomas, Burkitt's lymphomas (BL), T-cell non-Hodgkin's lymphomas, post-transplant lymphoproliferative disorders, AIDS-related lymphomas and gastric carcinomas. Using RNA hybridization (RISH), BARTs were detected within the neoplastic cells of these malignancies. BARTs encoding RK-BARF0 were not detected. The BARTs detected were shown possibly to encode the RPMS1 and BARF0 proteins, based on their splicing. However, BARTs actually harbouring the BARF0 ORF were detected only in specimens containing a relatively large number of EBV-positive cells. New monoclonal antibodies against the BARF0 protein were generated that efficiently recognized prokaryotic and eukaryotic recombinant BARF0. However, the BARF0 protein was not detected in clinical samples, nor in EBV-positive cell lines, even though these were positive for BARTs by RISH and/or BARF0 RNA analysis. Using immunoblot analysis, no antibodies against baculovirus-expressed BARF0 protein were detected in the sera of nasopharyngeal carcinoma patients, BL patients and Hodgkin's disease patients, patients with chronic EBV infection, infectious mononucleosis patients or EBV-positive healthy donors. Thus, BARTs containing the BARF0 ORF are expressed but the BARF0 protein cannot be detected and may be expressed only marginally. It is concluded that the BARF0 protein is unlikely to play a role in EBV-positive malignancies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19196-0
2003-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842647.html?itemId=/content/journal/jgv/10.1099/vir.0.19196-0&mimeType=html&fmt=ahah

References

  1. Baer, R., Bankier, A. T., Biggin, M. D. & 9 other authors ( 1984; ). DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310, 207–211.[CrossRef]
    [Google Scholar]
  2. Bijl, J., van Oostveen, J. W., Kreike, M. & 7 other authors ( 1995; ). Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and in benign and malignant lymphoid tissue. Blood 87, 1737–1745.
    [Google Scholar]
  3. Brink, A. A. T. P., Oudejans, J. J., Jiwa, M., Walboomers, J. M. M., Meijer, C. J. L. M. & van den Brule, A. J. C. ( 1997a; ). Multiprimed cDNA synthesis followed by PCR is the most suitable method for Epstein–Barr virus transcript analysis in small lymphoma biopsies. Mol Cell Probes 11, 39–47.[CrossRef]
    [Google Scholar]
  4. Brink, A. A. T. P., Dukers, D. F., van den Brule, A. J. C., Oudejans, J. J., Middeldorp, J. M., Meijer, C. J. L. M. & Jiwa, M. ( 1997b; ). Presence of Epstein–Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas. J Clin Pathol 50, 911–918.[CrossRef]
    [Google Scholar]
  5. Brink, A. A. T. P., Vervoort, M. B. H. J., Middeldorp, J. M., Meijer, C. J. L. M. & van den Brule, A. J. C. ( 1998; ). Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein–Barr virus latent transcripts, and its comparison with reverse transcriptase PCR. J Clin Microbiol 36, 3164–3169; erratum 37, 378.
    [Google Scholar]
  6. Brooks, L. A., Lear, A. L., Young, L. A. & Rickinson, A. B. ( 1993; ). Transcripts from the Epstein–Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol 67, 3182–3190.
    [Google Scholar]
  7. Chen, H. L., Lung, M. M., Sham, J. S., Choy, D. T. K., Griffin, B. E. & Ng, M. H. ( 1992; ). Transcription of BamHI A region of the EBV genome in NPC tissues and B cells. Virology 191, 193–201.[CrossRef]
    [Google Scholar]
  8. Chen, M. R., Middeldorp, J. M. & Hayward, S. D. ( 1993; ). Separation of the complex DNA binding domain of EBNA-1 into DNA recognition and dimerization subdomains of novel structure. J Virol 67, 4875–4885.
    [Google Scholar]
  9. Chen, H., Smith, P., Ambinder, R. F. & Hayward, S. D. ( 1999; ). Expression of Epstein–Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood. Blood 93, 3026–3032.
    [Google Scholar]
  10. De Bruin, P. C., Jiwa, M., Oudejans, J. J. & 8 other authors ( 1994; ). Presence of Epstein–Barr virus in extranodal T-cell lymphomas: differences in relation to site. Blood 83, 1612–1618.
    [Google Scholar]
  11. Fries, K. L., Sculley, T. B., Webster-Cyriaque, J., Rajadurai, P., Sadler, R. H. & Raab-Traub, N. ( 1997; ). Identification of a novel protein encoded by the BamHI A region of the Epstein–Barr virus. J Virol 71, 2765–2771.
    [Google Scholar]
  12. Gilligan, K. J., Rajadurai, P., Lin, J. C., Busson, P., Abdel-Hamid, M., Prasad, U., Tursz, T. & Raab-Traub, N. ( 1991; ). Expression of the Epstein–Barr virus BamHI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. J Virol 65, 6252–6259.
    [Google Scholar]
  13. Grässer, F. A., Murray, P. G., Kremmer, E. & 7 other authors ( 1994; ). Monoclonal antibodies directed against the Epstein–Barr virus-encoded nuclear antigen 1 (EBNA1): immunohistologic detection of EBNA1 in the malignant cells of Hodgkin's disease. Blood 84, 3792–3798.
    [Google Scholar]
  14. Hayes, D. P., Brink, A. A. T. P., Vervoort, M. B. H. J., Middeldorp, J. M., Meijer, C. J. L. M. & van den Brule, A. J. C. ( 1999; ). Expression of Epstein–Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases. Mol Pathol 52, 97–103; erratum 52, 305.
    [Google Scholar]
  15. Herbst, H., Steinbrecher, E., Niedobitek, G., Young, L. S., Brooks, L., Muller-Lantzsch, N. & Stein, H. ( 1992; ). Distribution and phenotype of Epstein–Barr virus-harboring cells in Hodgkin's disease. Blood 80, 484–491.
    [Google Scholar]
  16. Hitt, M. M., Allday, M. J., Hara, T., Karran, L., Jones, M. D., Busson, P., Tursz, T., Ernberg, I. & Griffin, B. E. ( 1989; ). EBV gene expression in an NPC-related tumour. EMBO J 8, 2639–2651.
    [Google Scholar]
  17. Jiwa, N. M., Kanavaros, P., De Bruin, P. C., van der Valk, P., Horstman, A., Vos, W., Mullink, H., Walboomers, J. M. M. & Meijer, C. J. L. M. ( 1993; ). Presence of Epstein–Barr virus harbouring small and intermediate-sized cells in Hodgkin's disease. Is there a relationship with Reed–Sternberg cells? J Pathol 170, 129–136.[CrossRef]
    [Google Scholar]
  18. Jiwa, N. M., Oudejans, J. J., Dukers, D. F., Vos, W., Horstman, A., van der Valk, P., Middeldorp, J. M., Walboomers, J. M. M. & Meijer, C. J. L. M. ( 1995; ). Immunohistochemical demonstration of different latent membrane protein-1 epitopes of Epstein–Barr virus in lymphoproliferative diseases. J Clin Pathol 48, 438–442.[CrossRef]
    [Google Scholar]
  19. Karran, L., Gao, Y., Smith, P. R. & Griffin, B. E. ( 1992; ). Expression of a family of complementary-strand transcripts in Epstein–Barr virus-infected cells. Proc Natl Acad Sci U S A 89, 8058–8062.[CrossRef]
    [Google Scholar]
  20. Kerstens, H. M. J., Poddighe, P. J. & Hanselaar, A. G. J. M. ( 1995; ). A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J Histochem Cytochem 43, 347–352.[CrossRef]
    [Google Scholar]
  21. Kienzle, N., Sculley, T. B., Poulsen, L., Buck, M., Cross, S., Raab-Traub, N. & Khanna, R. ( 1998; ). Identification of a cytotoxic T-lymphocyte response to the novel BARF0 protein of Epstein–Barr virus: a critical role for antigen expression. J Virol 72, 6614–6620.
    [Google Scholar]
  22. Kienzle, N., Sculley, T. B., Greco, S. & Khanna, R. ( 1999a; ). Silencing virus-specific cytotoxic T cell-mediated immune recognition by differential splicing: a novel implication of RNA processing for antigen presentation. J Immunol 162, 6963–6966.
    [Google Scholar]
  23. Kienzle, N., Buck, M., Greco, S., Krauer, K. & Sculley, T. B. ( 1999b; ). Epstein–Barr virus-encoded RK-BARF0 protein expression. J Virol 73, 8902–8906.
    [Google Scholar]
  24. Kusano, S. & Raab-Traub, N. ( 2001; ). An Epstein–Barr virus protein interacts with Notch. J Virol 75, 384–395.[CrossRef]
    [Google Scholar]
  25. Meij, P., Vervoort, M. B. H. J., Aarbiou, J., van Dissel, P., Brink, A., Bloemena, E., Meijer, C. J. L. M. & Middeldorp, J. M. ( 1999; ). Restricted low-level human antibody responses against Epstein–Barr virus (EBV)-encoded latent membrane protein 1 in a subgroup of patients with EBV-associated diseases. J Infect Dis 179, 1108–1115.[CrossRef]
    [Google Scholar]
  26. Middeldorp, J. M. & Herbrink, P. ( 1988; ). Epstein–Barr virus specific marker molecules for early diagnosis of infectious mononucleosis. J Virol Methods 21, 133–146.[CrossRef]
    [Google Scholar]
  27. Middeldorp, J. M., Brink, A. A., van den Brule, A. J. & Meijer, C. J. ( 2003; ). Pathogenic roles for Epstein–Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol 45, 1–36.[CrossRef]
    [Google Scholar]
  28. Minarovits, J., Hu, L. F., Marcsek, Z., Minarovits-Kormuta, S., Klein, G. & Ernberg, I. ( 1992; ). RNA polymerase III-transcribed EBER 1 and 2 transcription units are expressed and hypomethylated in the major Epstein–Barr virus-carrying cell types. J Gen Virol 73, 1687–1692.[CrossRef]
    [Google Scholar]
  29. Oudejans, J. J., van den Brule, A. J. C., Jiwa, N. M., de Bruin, P. C., Ossenkoppele, G. J., van der Valk, P., Walboomers, J. M. M. & Meijer, C. J. L. M. ( 1995; ). BHRF1, the Epstein–Barr virus (EBV) homologue of the BCL-2 protooncogene, is transcribed in EBV-associated B-cell lymphomas and in reactive lymphocytes. Blood 86, 1893–1902.
    [Google Scholar]
  30. Oudejans, J. J., Dukers, D. F., Jiwa, N. M. & 8 other authors ( 1996; ). Expression of Epstein–Barr virus encoded nuclear antigen 1 in benign and malignant tissues harbouring EBV. J Clin Pathol 49, 897–902.[CrossRef]
    [Google Scholar]
  31. Robertson, E. S., Tomkinson, B. & Kieff, E. ( 1994; ). An Epstein–Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro. J Virol 68, 1449–1458.
    [Google Scholar]
  32. Sadler, R. H. & Raab-Traub, N. ( 1995; ). Structural analyses of the Epstein–Barr virus BamHI A transcripts. J Virol 69, 1132–1141.
    [Google Scholar]
  33. Schroder, W., Kienzle, N., Bushell, G. & Sculley, T. ( 2002; ). Antiserum raised against the Epstein–Barr virus BARF0 protein reacts to HLA-DR beta chain. Arch Virol 147, 723–729.[CrossRef]
    [Google Scholar]
  34. Smith, P. ( 2001; ). Structure and function of the complementary strand transcripts/BARTs in EBV infection. EBV Rep 8, 1–4.
    [Google Scholar]
  35. Smith, P. R., Gao, Y., Karran, L., Jones, M. D., Snudden, D. & Griffin, B. E. ( 1993; ). Complex nature of the major viral polyadenylated transcripts in Epstein–Barr virus-associated tumors. J Virol 67, 3217–3225.
    [Google Scholar]
  36. Smith, P. R., de Jesus, O., Turner, D. & 7 other authors ( 2000; ). Structure and coding content of CST (BART) family RNAs of Epstein–Barr virus. J Virol 74, 3082–3092.[CrossRef]
    [Google Scholar]
  37. Takada, K. ( 2000; ). Epstein–Barr virus and gastric carcinoma. Mol Pathol 53, 255–261.[CrossRef]
    [Google Scholar]
  38. van den Brule, A. J. C., Cromme, F. V., Snijders, P. J. F., Smit, L., Oudejans, C. B. M., Baak, J. P. A., Meijer, C. J. L. M. & Walboomers, J. M. M. ( 1991; ). Nonradioactive RNA in situ hybridization detection of human papillomavirus 16-E7 transcripts in squamous cell carcinomas of the uterine cervix using confocal laser scan microscopy. Am J Pathol 139, 1037–1045.
    [Google Scholar]
  39. van Grunsven, W. M., Nabbe, A. & Middeldorp, J. M. ( 1993; ). Identification and molecular characterization of two diagnostically relevant marker proteins of the Epstein–Barr capsid antigen complex. J Med Virol 40, 161–169.[CrossRef]
    [Google Scholar]
  40. Zhang, J., Chen, H., Weinmaster, G. & Hayward, S. D. ( 2001; ). Epstein–Barr virus BamHI-A rightward transcript-encoded RPMS protein interacts with the CBF1-associated corepressor CIR to negatively regulate the activity of EBNA2 and NotchIC. J Virol 75, 2946–2956.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19196-0
Loading
/content/journal/jgv/10.1099/vir.0.19196-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error