1887

Abstract

Adeno-associated virus type 2 integrates preferentially into the AAVS1 locus on chromosome 19 of the human genome. It was reported previously that transfection with two plasmids, one for Rep and the other carrying a transgene flanked by inverted terminal repeats (ITRs), enables preferential integration of the latter into AAVS1. Aiming at increasing the frequency of AAVS1-specific integration, the Rep- to transgene-plasmid ratio necessary to achieve a higher frequency of site-specific integration was examined. 293 cells were co-transfected with the Rep78 plasmid and an ITR-flanked Neo gene at different ratios. G418-resistant clones were selected randomly. Extensive Southern blot analysis showed an optimum range of Rep78 expression. In that range, approximately 20 % of clones harboured the Neo gene at AAVS1. Excess Rep expression, however, resulted in ‘abortive’ integration of the Neo gene, a rearrangement of AAVS1 without transgene integration. Rep78 appeared to cause abortive integration more extensively than Rep68. Deleterious effects of the Rep protein on the AAVS1 locus should be considered to develop an improved AAVS1-targeted system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19193-0
2003-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842127.html?itemId=/content/journal/jgv/10.1099/vir.0.19193-0&mimeType=html&fmt=ahah

References

  1. Balagué, C., Kalla, M. & Zhang, W. W. ( 1997; ). Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 71, 3299–3306.
    [Google Scholar]
  2. Berns, K. I. & Giraud, C. ( 1996; ). Biology of adeno-associated virus. Curr Top Microbiol Immunol 218, 1–23.
    [Google Scholar]
  3. Cheung, A. K., Hoggan, M. D., Hauswirth, W. W. & Berns, K. I. ( 1980; ). Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. J Virol 33, 739–748.
    [Google Scholar]
  4. Chiorini, J. A., Zimmermann, B., Yang, L., Smith, R. H., Ahearn, A., Herberg, F. & Kotin, R. M. ( 1998; ). Inhibition of PrKX, a novel protein kinase, and the cyclic AMP-dependent protein kinase PKA by the regulatory proteins of adeno-associated virus type 2. Mol Cell Biol 18, 5921–5929.
    [Google Scholar]
  5. Di Pasquale, G. & Stacey, S. N. ( 1998; ). Adeno-associated virus Rep78 protein interacts with protein kinase A and its homolog PRKX and inhibits CREB-dependent transcriptional activation. J Virol 72, 7916–7925.
    [Google Scholar]
  6. Dyall, J. & Berns, K. I. ( 1998; ). Site-specific integration of adeno-associated virus into an episome with the target locus via a deletion-substitution mechanism. J Virol 72, 6195–6198.
    [Google Scholar]
  7. Giraud, C., Winocour, E. & Berns, K. I. ( 1994; ). Site-specific integration by adeno-associated virus is directed by a cellular DNA sequence. Proc Natl Acad Sci U S A 91, 10039–10043.[CrossRef]
    [Google Scholar]
  8. Hermanns, J., Schulze, A., Jansen-Dürr, P., Kleinschmidt, J. A., Schmidt, R. & zur Hausen, H. ( 1997; ). Infection of primary cells by adeno-associated virus type 2 results in a modulation of cell cycle-regulating proteins. J Virol 71, 6020–6027.
    [Google Scholar]
  9. Hermonat, P. L. ( 1991; ). Inhibition of H-ras expression by the adeno-associated virus Rep78 transformation suppressor gene product. Cancer Res 51, 3373–3377.
    [Google Scholar]
  10. Hermonat, P. L. ( 1994; ). Down-regulation of the human c-fos and c-myc proto-oncogene promoters by adeno-associated virus Rep78. Cancer Lett 81, 129–136.[CrossRef]
    [Google Scholar]
  11. Hölscher, C., Hörer, M., Kleinschmidt, J. A., Zentgraf, H., Bürkle, A. & Heilbronn, R. ( 1994; ). Cell lines inducibly expressing the adeno-associated virus (AAV) rep gene: requirements for productive replication of rep-negative AAV mutants. J Virol 68, 7169–7177.
    [Google Scholar]
  12. Im, D.-S. & Muzyczka, N. ( 1989; ). Factors that bind to adeno-associated virus terminal repeats. J Virol 63, 3095–3104.
    [Google Scholar]
  13. Im, D.-S. & Muzyczka, N. ( 1990; ). The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61, 447–457.[CrossRef]
    [Google Scholar]
  14. Kearns, W. G., Afione, S. A., Fulmer, S. B., Pang, M. C., Erikson, D., Egan, M., Landrum, M. J., Flotte, T. R. & Cutting, G. R. ( 1996; ). Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther 3, 748–755.
    [Google Scholar]
  15. Kogure, K., Urabe, M., Mizukami, H., Kume, A., Sato, Y., Monahan, J. & Ozawa, K. ( 2001; ). Targeted integration of foreign DNA into a defined locus on chromosome 19 in K562 cells using AAV-derived components. Int J Hematol 73, 469–475.[CrossRef]
    [Google Scholar]
  16. Kotin, R. M. ( 1994; ). Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 5, 793–801.[CrossRef]
    [Google Scholar]
  17. Kotin, R. M., Siniscalco, M., Samulski, R. J. & 7 other authors ( 1990; ). Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87, 2211–2215.[CrossRef]
    [Google Scholar]
  18. Kotin, R. M., Linden, R. M. & Berns, K. I. ( 1992; ). Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11, 5071–5078.
    [Google Scholar]
  19. Labow, M. A., Graf, L. H., Jr & Berns, K. I. ( 1987; ). Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes. Mol Cell Biol 7, 1320–1325.
    [Google Scholar]
  20. Lamartina, S., Roscilli, G., Rinaudo, D., Delmastro, P. & Toniatti, C. ( 1998; ). Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle. J Virol 72, 7653–7658.
    [Google Scholar]
  21. Linden, R. M., Ward, P., Giraud, C., Winocour, E. & Berns, K. I. ( 1996; ). Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 93, 11288–11294.[CrossRef]
    [Google Scholar]
  22. McCarty, D. M., Christensen, M. & Muzyczka, N. ( 1991; ). Sequences required for coordinate induction of adeno-associated virus p19 and p40 promoters by Rep protein. J Virol 65, 2936–2945.
    [Google Scholar]
  23. McCarty, D. M., Pereira, D. J., Zolotukhin, I., Zhou, X., Ryan, J. H. & Muzyczka, N. ( 1994; ). Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein. J Virol 68, 4988–4997.
    [Google Scholar]
  24. Muzyczka, N. ( 1992; ). Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 158, 97–129.
    [Google Scholar]
  25. Ni, T. H., Zhou, X., McCarty, D. M., Zolotukhin, I. & Muzyczka, N. ( 1994; ). In vitro replication of adeno-associated virus DNA. J Virol 68, 1128–1138.
    [Google Scholar]
  26. Ni, T. H., McDonald, W. F., Zolotukhin, I., Melendy, T., Waga, S., Stillman, B. & Muzyczka, N. ( 1998; ). Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection. J Virol 72, 2777–2787.
    [Google Scholar]
  27. Oelze, I., Rittner, K. & Sczakiel, G. ( 1994; ). Adeno-associated virus type 2 rep gene-mediated inhibition of basal gene expression of human immunodeficiency virus type 1 involves its negative regulatory functions. J Virol 68, 1229–1233.
    [Google Scholar]
  28. Pieroni, L., Fipaldini, C., Monciotti, A. & 7 other authors ( 1998; ). Targeted integration of adeno-associated virus-derived plasmids in transfected human cells. Virology 249, 249–259.[CrossRef]
    [Google Scholar]
  29. Samulski, R. J., Zhu, X., Xiao, X., Brook, J. D., Housman, D. E., Epstein, N. & Hunter, L. A. ( 1991; ). Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10, 3941–3950.
    [Google Scholar]
  30. Shelling, A. N. & Smith, M. G. ( 1994; ). Targeted integration of transfected and infected adeno-associated virus vectors containing the neomycin resistance gene. Gene Ther 1, 165–169.
    [Google Scholar]
  31. Surosky, R. T., Urabe, M., Godwin, S. G., McQuiston, S. A., Kurtzman, G. J., Ozawa, K. & Natsoulis, G. ( 1997; ). Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 71, 7951–7959.
    [Google Scholar]
  32. Tsunoda, H., Hayakawa, T., Sakuragawa, N. & Koyama, H. ( 2000; ). Site-specific integration of adeno-associated virus-based plasmid vectors in lipofected HeLa cells. Virology 268, 391–401.[CrossRef]
    [Google Scholar]
  33. Weger, S., Wistuba, A., Grimm, D. & Kleinschmidt, J. A. ( 1997; ). Control of adeno-associated virus type 2 cap gene expression: relative influence of helper virus, terminal repeats, and Rep proteins. J Virol 71, 8437–8447.
    [Google Scholar]
  34. Weitzman, M. D., Kyöstio, S. R., Kotin, R. M. & Owens, R. A. ( 1994; ). Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci U S A 91, 5808–5812.[CrossRef]
    [Google Scholar]
  35. Wollscheid, V., Frey, M., Zentgraf, H. & Sczakiel, G. ( 1997; ). Purification and characterization of an active form of the p78Rep protein of adeno-associated virus type 2 expressed in Escherichia coli. Protein Expr Purif 11, 241–249.[CrossRef]
    [Google Scholar]
  36. Yang, Q., Kadam, A. & Trempe, J. P. ( 1992; ). Mutational analysis of the adeno-associated virus rep gene. J Virol 66, 6058–6069.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19193-0
Loading
/content/journal/jgv/10.1099/vir.0.19193-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error