1887

Abstract

Deletion mutation of the RNA 5′ leader sequence of simian immunodeficiency virus (SIV) was used to localize the virus packaging signal. Deletion of sequences upstream of the major splice donor (SD) site produced a phenotype most consistent with a packaging defect when analysed by both RNase protection assay and RT-PCR. Sequences downstream of the SD were deleted and produced varying effects but did not affect packaging: a large downstream deletion had little effect on function, whereas a nested deletion produced a profound replication defect characterized by reduced protein production. Secondary structure analysis provided a potential explanation for this. The major packaging signal of SIV appears to be upstream of the SD in a region similar to that of human immunodeficiency virus type 2 (HIV-2) but unlike that of HIV-1; however, the packaging signal of all three viruses are at a similar distance from their respective cap sites. This conserved positioning suggests that it is more important in the virus life cycle than the position of the signal relative to the SD.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19185-0
2003-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842423.html?itemId=/content/journal/jgv/10.1099/vir.0.19185-0&mimeType=html&fmt=ahah

References

  1. Adam, M. A. & Miller, A. D. ( 1988; ). Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions. J Virol 62, 3802–3806.
    [Google Scholar]
  2. Aldovini, A. & Young, R. A. ( 1990; ). Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64, 1920–1926.
    [Google Scholar]
  3. Bender, M. A., Palmer, T. D., Gelinas, R. E. & Miller, A. D. ( 1987; ). Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J Virol 61, 1639–1646.
    [Google Scholar]
  4. Berkhout, B. & van Wamel, J. L. B. ( 1996; ). Role of the DIS hairpin in replication of human immunodeficiency virus type 1. J Virol 70, 6723–6732.
    [Google Scholar]
  5. Berkowitz, R. D., Hammarskjold, M. L., Helga-Maria, C., Rekosh, D. & Goff, S. P. ( 1995; ). 5′ regions of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. Virology 212, 718–723.[CrossRef]
    [Google Scholar]
  6. Berkowitz, R., Fisher, J. & Goff, S. P. ( 1996; ). RNA packaging. Curr Top Microbiol Immunol 214, 177–218.
    [Google Scholar]
  7. Buck, C. B., Shen, X., Egan, M. A., Pierson, T. C., Walker, C. M. & Siliciano, R. F. ( 2001; ). The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 75, 181–191.[CrossRef]
    [Google Scholar]
  8. Clavel, F. & Orenstein, J. M. ( 1990; ). A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol 64, 5230–5234.
    [Google Scholar]
  9. Das, A. T., Klaver, B., Klasens, B. I. F., van Wamel, J. L. B. & Berkout, B. ( 1997; ). A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol 71, 2346–2356.
    [Google Scholar]
  10. De Guzman, R. N., Wu, Z. R., Stalling, C. C., Pappalardo, L., Borer, P. N. & Summers, M. F. ( 1998; ). Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 279, 384–388.[CrossRef]
    [Google Scholar]
  11. Garzino Demo, A., Gallo, R. C. & Arya, S. K. ( 1995; ). Human immunodeficiency virus type 2 (HIV-2): packaging signal and associated negative regulatory element. Hum Gene Ther 6, 177–184.[CrossRef]
    [Google Scholar]
  12. Griffin, S. D. C., Allen, J. F. & Lever, A. M. L. ( 2001; ). The major human immundeficiency virus type 2 (HIV-2) packaging signal is present on all HIV-2 RNA species: cotranslational RNA encapsidation and limitation of Gag protein confer specificity. J Virol 75, 12058–12069.[CrossRef]
    [Google Scholar]
  13. Guan, Y., Whitney, J. B., Diallo, K. & Wainberg, M. A. ( 2000; ). Leader sequences downstream of the primer binding site are important for efficient replication of simian immunodeficiency virus. J Virol 74, 8854–8860.[CrossRef]
    [Google Scholar]
  14. Guan, Y., Diallo, K., Whitney, J. B., Liang, C. & Wainberg, M. A. ( 2001a; ). An intact U5-leader stem is important for efficient replication of simian immunodeficiency virus. J Virol 75, 11924–11929.[CrossRef]
    [Google Scholar]
  15. Guan, Y., Whitney, J. B., Liang, C. & Wainberg, M. A. ( 2001b; ). Novel, live attenuated simian immunodeficiency virus constructs containing major deletions in leader RNA sequences. J Virol 75, 2776–2785.[CrossRef]
    [Google Scholar]
  16. Guesdon, F. M. J., Greatorex, J., Rhee, S. R., Fisher, R., Hunter, E. & Lever, A. M. L. ( 2001; ). Sequences in the 5′ leader of Mason–Pfizer monkey virus which affect viral particle production and genomic RNA packaging: development of MPMV packaging cell lines. Virology 288, 81–88.[CrossRef]
    [Google Scholar]
  17. Katz, R. A., Terry, R. W. & Skalka, A. M. ( 1986; ). A conserved cis-acting sequence in the 5′ leader of avian sarcoma virus RNA is required for packaging. J Virol 59, 163–167.
    [Google Scholar]
  18. Kaye, J. F. & Lever, A. M. L. ( 1999; ). Human immunodeficiency virus types 1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. J Virol 73, 3023–3031.
    [Google Scholar]
  19. Lever, A., Gottlinger, H., Haseltine, W. & Sodroski, J. ( 1989; ). Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63, 4085–4087.
    [Google Scholar]
  20. Linial, M. L. & Miller, A. D. ( 1990; ). Retroviral RNA packaging: sequence requirements and implications. In Retroviruses – Strategies of Replication, pp. 125–152. Edited by R. Swanstrom & P. K. Vogt. New York: Springer-Verlag.
  21. Linial, M., Medeiros, E. & Hayward, W. S. ( 1978; ). An avian oncovirus mutant (SE 21Q1b) deficient in genomic RNA: biological and biochemical characterization. Cell 15, 1371–1381.[CrossRef]
    [Google Scholar]
  22. McCann, E. M. & Lever, A. M. L. ( 1997; ). Location of cis-acting signals important for RNA encapsidation in the leader sequence of human immunodeficiency virus type 2. J Virol 71, 4133–4137.
    [Google Scholar]
  23. Ohlmann, T., Lopez-Lastra, M. & Darlix, J. L. ( 2000; ). An internal ribosome entry segment promotes translation of the simian immunodeficiency virus genomic RNA. J Biol Chem 275, 11899–11906.[CrossRef]
    [Google Scholar]
  24. Parolin, C., Dorfman, T., Palu, G., Gottlinger, H. & Sodroski, J. ( 1994; ). Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 68, 3888–3895.
    [Google Scholar]
  25. Rizvi, T. A. & Panganiban, A. T. ( 1993; ). Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles. J Virol 67, 2681–2688.
    [Google Scholar]
  26. Rud, E. W., Cranage, M., Yon, J., Quirk, J., Ogilvie, L., Cook, N., Webster, S., Dennis, M. & Clarke, B. E. ( 1994; ). Molecular and biological characterization of simian immunodeficiency virus macaque strain 32H proviral clones containing nef size variants. J Gen Virol 75, 529–543.[CrossRef]
    [Google Scholar]
  27. Sadaie, M. R., Zamani, M., Whang, S., Sistron, N. & Arya, S. K. ( 1998; ). Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy: dual gene expression in the context of HIV-2 LTR and Tat. J Med Virol 54, 118–128.[CrossRef]
    [Google Scholar]
  28. Schnell, T., Foley, P., Wirth, M., Munch, J. & Uberla, K. ( 2000; ). Development of self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11, 439–447.[CrossRef]
    [Google Scholar]
  29. Zeffman, A., Hassard, S., Varani, G. & Lever, A. M. L. ( 2000; ). The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein. J Mol Biol 297, 877–893.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19185-0
Loading
/content/journal/jgv/10.1099/vir.0.19185-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error