1887

Abstract

RNA synthesis by negative-strand RNA viruses (NSVs) involves transcription of subgenomic mRNAs and replication of ribonucleoprotein complexes. In this study, the envelope matrix (M) protein of rabies virus (RV) was identified as a factor which inhibits transcription and stimulates replication. Transcription, but not replication, of RV minigenomes or of full-length RV was decreased by expression of heterologous M. Since RV assembly involving M and the glycoprotein G renders virus synthetically quiescent, an RV was generated with the M and G genes substituted by placeholders. Surprisingly, RNA synthesis by this recombinant was characterized not only by an increased transcription rate but also by a diminished accumulation of replication products. This phenotype was reversed in a dose-dependent manner by providing M , showing that M is a replication-stimulatory factor. The role of M in determining the balance of replication and transcription was further exploited by generation of a recombinant RV with attenuated M expression, which is highly active in transcription. Regulation of RNA synthesis by matrix proteins may represent a general mechanism of nonsegmented NSVs, which is probably obscured by the silencing activity of M during virus assembly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19128-0
2003-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841613.html?itemId=/content/journal/jgv/10.1099/vir.0.19128-0&mimeType=html&fmt=ahah

References

  1. Abraham, G. & Banerjee, A. K. ( 1976; ). Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73, 1504–1508.[CrossRef]
    [Google Scholar]
  2. Arnheiter, H., Davis, N. L., Wertz, G., Schubert, M. & Lazzarini, R. A. ( 1985; ). Role of the nucleocapsid protein in regulating vesicular stomatitis virus RNA synthesis. Cell 41, 259–267.[CrossRef]
    [Google Scholar]
  3. Ball, L. A. & White, C. N. ( 1976; ). Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73, 442–446.[CrossRef]
    [Google Scholar]
  4. Barge, A., Gaudin, Y., Coulon, P. & Ruigrok, R. W. ( 1993; ). Vesicular stomatitis virus M protein may be inside the ribonucleocapsid coil. J Virol 67, 7246–7253.
    [Google Scholar]
  5. Barik, S. & Banerjee, A. K. ( 1992; ). Phosphorylation by cellular casein kinase II is essential for transcriptional activity of vesicular stomatitis virus phosphoprotein P. Proc Natl Acad Sci U S A 89, 6570–6574.[CrossRef]
    [Google Scholar]
  6. Bermingham, A. & Collins, P. L. ( 1999; ). The M2–2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc Natl Acad Sci U S A 96, 11259–11264.[CrossRef]
    [Google Scholar]
  7. Blumberg, B. M., Leppert, M. & Kolakofsky, D. ( 1981; ). Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication. Cell 23, 837–845.[CrossRef]
    [Google Scholar]
  8. Blumberg, B. M., Giorgi, C. & Kolakofsky, D. ( 1983; ). N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro. Cell 32, 559–567.[CrossRef]
    [Google Scholar]
  9. Buchholz, U. J., Finke, S. & Conzelmann, K. K. ( 1999; ). Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73, 251–259.
    [Google Scholar]
  10. Carroll, A. R. & Wagner, R. R. ( 1979; ). Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus. J Virol 29, 134–142.
    [Google Scholar]
  11. Chuang, J. L. & Perrault, J. ( 1997; ). Initiation of vesicular stomatitis virus mutant polR1 transcription internally at the N gene in vitro. J Virol 71, 1466–1475.
    [Google Scholar]
  12. Clinton, G. M., Little, S. P., Hagen, F. S. & Huang, A. S. ( 1978; ). The matrix (M) protein of vesicular stomatitis virus regulates transcription. Cell 15, 1455–1462.[CrossRef]
    [Google Scholar]
  13. Conzelmann, K. K. & Schnell, M. ( 1994; ). Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol 68, 713–719.
    [Google Scholar]
  14. Conzelmann, K. K., Cox, J. H. & Thiel, H. J. ( 1991; ). An L (polymerase)-deficient rabies virus defective interfering particle RNA is replicated and transcribed by heterologous helper virus L proteins. Virology 184, 655–663.[CrossRef]
    [Google Scholar]
  15. Curran, J., Marq, J. B. & Kolakofsky, D. ( 1992; ). The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189, 647–656.[CrossRef]
    [Google Scholar]
  16. Das, T., Mathur, M., Gupta, A. K., Janssen, G. M. & Banerjee, A. K. ( 1998; ). RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 αβγ for its activity. Proc Natl Acad Sci U S A 95, 1449–1454.[CrossRef]
    [Google Scholar]
  17. Fearns, R., Peeples, M. E. & Collins, P. L. ( 1997; ). Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome. Virology 236, 188–201.[CrossRef]
    [Google Scholar]
  18. Finke, S. & Conzelmann, K. K. ( 1997; ). Ambisense gene expression from recombinant rabies virus: random packaging of positive- and negative-strand ribonucleoprotein complexes into rabies virions. J Virol 71, 7281–7288.
    [Google Scholar]
  19. Finke, S. & Conzelmann, K. K. ( 1999; ). Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. J Virol 73, 3818–3825.
    [Google Scholar]
  20. Finke, S., Cox, J. H. & Conzelmann, K. K. ( 2000; ). Differential transcription attenuation of rabies virus genes by intergenic regions: generation of recombinant viruses overexpressing the polymerase gene. J Virol 74, 7261–7269.[CrossRef]
    [Google Scholar]
  21. Flood, E. A. & Lyles, D. S. ( 1999; ). Assembly of nucleocapsids with cytosolic and membrane-derived matrix proteins of vesicular stomatitis virus. Virology 261, 295–308.[CrossRef]
    [Google Scholar]
  22. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. ( 1986; ). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 8122–8126.[CrossRef]
    [Google Scholar]
  23. Gaudier, M., Gaudin, Y. & Knossow, M. ( 2002; ). Crystal structure of vesicular stomatitis virus matrix protein. EMBO J 21, 2886–2892.[CrossRef]
    [Google Scholar]
  24. Gubbay, O., Curran, J. & Kolakofsky, D. ( 2001; ). Sendai virus genome synthesis and assembly are coupled: a possible mechanism to promote viral RNA polymerase processivity. J Gen Virol 82, 2895–2903.
    [Google Scholar]
  25. Gupta, A. K. & Banerjee, A. K. ( 1997; ). Expression and purification of vesicular stomatitis virus N-P complex from Escherichia coli: role in genome RNA transcription and replication in vitro. J Virol 71, 4264–4271.
    [Google Scholar]
  26. Gupta, A. K., Blondel, D., Choudhary, S. & Banerjee, A. K. ( 2000; ). The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol 74, 91–98.[CrossRef]
    [Google Scholar]
  27. Hwang, L. N., Englund, N., Das, T., Banerjee, A. K. & Pattnaik, A. K. ( 1999; ). Optimal replication activity of vesicular stomatitis virus RNA polymerase requires phosphorylation of a residue(s) at carboxy-terminal domain II of its accessory subunit, phosphoprotein P. J Virol 73, 5613–5620.
    [Google Scholar]
  28. Martinet, C., Combard, A., Printz-Ane, C. & Printz, P. ( 1979; ). Envelope proteins and replication of vesicular stomatitis virus: in vivo effects of RNA+ temperature-sensitive mutations on viral RNA synthesis. J Virol 29, 123–133.
    [Google Scholar]
  29. Mebatsion, T., Konig, M. & Conzelmann, K. K. ( 1996; ). Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84, 941–951.[CrossRef]
    [Google Scholar]
  30. Mebatsion, T., Weiland, F. & Conzelmann, K. K. ( 1999; ). Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73, 242–250.
    [Google Scholar]
  31. Pattnaik, A. K., Hwang, L., Li, T., Englund, N., Mathur, M., Das, T. & Banerjee, A. K. ( 1997; ). Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication. J Virol 71, 8167–8175.
    [Google Scholar]
  32. Patton, J. T., Davis, N. L. & Wertz, G. W. ( 1984; ). N protein alone satisfies the requirement for protein synthesis during RNA replication of vesicular stomatitis virus. J Virol 49, 303–309.
    [Google Scholar]
  33. Richardson, J. C. & Peluso, R. W. ( 1996; ). Inhibition of VSV genome RNA replication but not transcription by monoclonal antibodies specific for the viral P protein. Virology 216, 26–34.[CrossRef]
    [Google Scholar]
  34. Schlender, J., Bossert, B., Buchholz, U. & Conzelmann, K. K. ( 2000; ). Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize α/β interferon-induced antiviral response. J Virol 74, 8234–8242.[CrossRef]
    [Google Scholar]
  35. Schnell, M. J., Mebatsion, T. & Conzelmann, K. K. ( 1994; ). Infectious rabies viruses from cloned cDNA. EMBO J 13, 4195–4203.
    [Google Scholar]
  36. Staeheli, P., Sentandreu, M., Pagenstecher, A. & Hausmann, J. ( 2001; ). α/β interferon promotes transcription and inhibits replication of borna disease virus in persistently infected cells. J Virol 75, 8216–8223.[CrossRef]
    [Google Scholar]
  37. Suryanarayana, K., Baczko, K., ter, Meulen., V. & Wagner, R. R. ( 1994; ). Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 68, 1532–1543.
    [Google Scholar]
  38. Watanabe, K., Handa, H., Mizumoto, K. & Nagata, K. ( 1996; ). Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol 70, 241–247.
    [Google Scholar]
  39. Wertz, G. W., Perepelitsa, V. P. & Ball, L. A. ( 1998; ). Gene rearrangement attenuates expression and lethality of a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A 95, 3501–3506.[CrossRef]
    [Google Scholar]
  40. Whelan, S. P. & Wertz, G. W. ( 2002; ). Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci U S A 99, 9178–9183.[CrossRef]
    [Google Scholar]
  41. Yang, J., Koprowski, H., Dietzschold, B. & Fu, Z. F. ( 1999; ). Phosphorylation of rabies virus nucleoprotein regulates viral RNA transcription and replication by modulating leader RNA encapsidation. J Virol 73, 1661–1664.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19128-0
Loading
/content/journal/jgv/10.1099/vir.0.19128-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error