1887

Abstract

Moloney murine leukaemia virus (MoMLV) enters host cells by membrane fusion between the viral envelope and the host cell membrane. The cytoplasmic tail (R peptide) of the MoMLV envelope protein (Env) is cleaved by the viral protease during virion maturation. R peptide-truncated Env induces syncytia in susceptible cells but R peptide-containing Env does not, indicating that the R peptide inhibits membrane fusion. To examine the function of amino acid residues at the R peptide cleavage site in virus entry, mutant Env expression plasmids containing amino acid substitutions at these cleavage site residues were constructed. Some of these mutants induced syncytia in NIH 3T3 cells, even though they expressed the R peptide, indicating the importance of these residues for membrane fusion inhibition by the R peptide. Some mutants in which R peptide cleavage was detected had comparable transduction efficiency to wild-type Env, but mutants in which R peptide cleavage was not detected had lower transduction efficiency than wild-type Env. This result strongly supports that R peptide cleavage is required for virus entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19126-0
2003-08-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842253.html?itemId=/content/journal/jgv/10.1099/vir.0.19126-0&mimeType=html&fmt=ahah

References

  1. Aguilar H. C., Anderson W. F., Cannon P. M.. 2003; Cytoplasmic tail of Moloney murine leukemia virus envelope protein influences the conformation of the extracellular domain: implications for mechanism of action of the R peptide. J Virol77:1281–1291
    [Google Scholar]
  2. Albritton L. M., Tseng L., Scadden D., Cunningham J. M.. 1989; A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell57:659–666
    [Google Scholar]
  3. Battini J.-L., Heard J. M., Danos O.. 1992; Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J Virol66:1468–1475
    [Google Scholar]
  4. Bobkova M., Stitz J., Engelstadter M., Cichutek K., Buchholz C. J.. 2002; Identification of R-peptides in envelope proteins of C-type retroviruses. J Gen Virol83:2241–2246
    [Google Scholar]
  5. Boross P., Bagossi P., Copeland T. D., Oroszlan S., Louis J. M., Tozser J.. 1999; Effect of substrate residues on the P2′ preference of retroviral proteinases. Eur J Biochem264:921–929
    [Google Scholar]
  6. Brody B. A., Rhee S. G., Hunter E.. 1994; Postassembly cleavage of a retroviral glycoprotein cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. J Virol68:4620–4627
    [Google Scholar]
  7. Cheng S., Fockler C., Barnes W. M., Higuchi R.. 1994; Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A91:5695–5699
    [Google Scholar]
  8. Cosset F.-L., Takeuchi Y., Battini J.-L., Weiss R. A., Collins M. K. L.. 1995; High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol69:7430–7436
    [Google Scholar]
  9. Davey R. A., Zuo Y., Cunningham J. M.. 1999; Identification of a receptor-binding pocket on the envelope protein of Friend murine leukemia virus. J Virol73:3758–3763
    [Google Scholar]
  10. Granowitz C., Berkowitz R. D., Goff S. P.. 1996; Mutations affecting the cytoplasmic domain of the Moloney murine leukemia virus envelope protein: rapid reversion during replication. Virus Res41:25–42
    [Google Scholar]
  11. Green N., Shinnick T. M., Witte O., Ponticelli A., Sutcliffe J. G., Lerner R. A.. 1981; Sequence-specific antibodies show that maturation of Moloney leukemia virus envelope polyprotein involves removal of a COOH-terminal peptide. Proc Natl Acad Sci U S A78:6023–6027
    [Google Scholar]
  12. Henderson L. E., Sowder R., Copeland T. D., Smythers G., Oroszlan S.. 1984; Quantitative separation of murine leukemia virus proteins by reversed-phase high-pressure liquid chromatography reveals newly described Gag and Env cleavage products. J Virol52:492–500
    [Google Scholar]
  13. Higuchi R., Krummel B., Saiki R. K.. 1988; A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res16:7351–7367
    [Google Scholar]
  14. Januszeski M. M., Cannon P. M., Chen D., Rozenberg Y., Anderson W. F.. 1997; Functional analysis of the cytoplasmic tail of Moloney murine leukemia virus envelope protein. J Virol71:3613–3619
    [Google Scholar]
  15. Jones J. S., Risser R.. 1993; Cell fusion induced by the murine leukemia virus envelope glycoprotein. J Virol67:67–74
    [Google Scholar]
  16. Kiernan R. E., Freed E. O.. 1998; Cleavage of the murine leukemia virus transmembrane Env protein by human immunodeficiency virus type 1 protease: transdominant inhibition by matrix mutations. J Virol72:9621–9627
    [Google Scholar]
  17. Kubo Y., Kakimi K., Higo K., Wang L., Kobayashi H., Kuribayashi K., Masuda T., Hirama T., Ishimoto A.. 1994; The p15gag and p12gag regions are both necessary for the pathogenicity of the murine AIDS virus. J Virol68:5532–5537
    [Google Scholar]
  18. Kubo Y., Ono T., Ogura M., Ishimoto A., Amanuma H.. 2002; A glycosylation-defective variant of the ecotropic murine retrovirus receptor is expressed in rat XC cells. Virology303:338–344
    [Google Scholar]
  19. Li M., Yang C., Compans R. W.. 2001; Mutations in the cytoplasmic tail of murine leukemia virus envelope protein suppress fusion inhibition by R peptide. J Virol75:2337–2344
    [Google Scholar]
  20. MacKrell A. J., Soong N. W., Curtis C. M., Anderson W. F.. 1996; Identification of a subdomain in the Moloney murine leukemia virus envelope protein involved in receptor binding. J Virol70:1768–1774
    [Google Scholar]
  21. Melikyan G. B., Markosyan R. M., Brener S. A., Rozenberg Y., Cohen F. S.. 2000; Role of the cytoplasmic tail of ecotropic Moloney murine leukemia virus Env protein in fusion pore formation. J Virol74:447–455
    [Google Scholar]
  22. Menendez-Arias L., Gotte D., Oroszlan S.. 1993; Moloney murine leukemia virus protease: bacterial expression and characterization of the purified enzyme. Virology196:557–563
    [Google Scholar]
  23. Menendez-Arias L., Weber I. T., Soss J., Harrison R. W., Gotte D., Oroszlan S.. 1994; Kinetic and modeling studies of subsites S4–S3′ of Moloney murine leukemia virus protease. J Biol Chem269:16795–16801
    [Google Scholar]
  24. Ott D., Rein A.. 1992; Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU. J Virol66:4632–4638
    [Google Scholar]
  25. Ragheb J. A., Anderson W. F.. 1994; pH-independent murine leukemia virus ecotropic envelope-mediated cell fusion: implications for the role of the R peptide and p12E TM in viral entry. J Virol68:3220–3231
    [Google Scholar]
  26. Rein A., Mirro J., Haynes J. G., Ernst S. M., Nagashima K.. 1994; Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p12E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol68:1773–1781
    [Google Scholar]
  27. Rice N. R., Henderson L. E., Sowder R. C., Copeland T. D., Oroszlan S., Edwards J. F.. 1990; Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus. J Virol64:3770–3778
    [Google Scholar]
  28. Rothenberg S. M., Olsen M. N., Laurent L. C., Crowley R. A., Brown P. O.. 2001; Comprehensive mutational analysis of the Moloney murine leukemia virus envelope protein. J Virol75:11851–11862
    [Google Scholar]
  29. Schagger H., von Jagow G.. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem166:368–379
    [Google Scholar]
  30. Schultz A., Rein A.. 1985; Maturation of murine leukemia virus Env proteins in the absence of other viral proteins. Virology145:335–339
    [Google Scholar]
  31. Thomas A., Gray K. D., Roth M. J.. 1997; Analysis of mutations within the cytoplasmic domain of the Moloney murine leukemia virus transmembrane protein. Virology227:305–313
    [Google Scholar]
  32. Yang C., Compans R. W.. 1996; Analysis of the cell fusion activities of chimeric simian immunodeficiency virus-murine leukemia virus envelope proteins: inhibitory effects of the R peptide. J Virol70:248–254
    [Google Scholar]
  33. Yang C., Compans R. W.. 1997; Analysis of the murine leukemia virus R peptide: delineation of the molecular determinants which are important for its fusion inhibition activity. J Virol71:8490–8496
    [Google Scholar]
  34. Zavorotinskaya T., Albritton L. M.. 1999; A hydrophobic patch in ecotropic murine leukemia virus envelope protein is the putative binding site for a critical tyrosine residue on the cellular receptor. J Virol73:10164–10172
    [Google Scholar]
  35. Zhao Y., Zhu L., Benedict C. A., Chen D., Anderson W. F., Cannon P. M.. 1998; Functional domains in the retroviral transmembrane protein. J Virol72:5392–5398
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19126-0
Loading
/content/journal/jgv/10.1099/vir.0.19126-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error