IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system Free

Abstract

Development of a protective host response against intracellular pathogens requires innate and cell-mediated immune responses, with cytokines playing an important role in host defences. Different studies in mice have shown that IL-12 can promote protective immunity to a variety of viruses but, during virus infection, little is known about the function of IL-18 alone or in combination with IL-12. Using recombinant vaccinia viruses (rVVs) expressing IL-12 and IL-18, the antiviral role of both cytokines in mice has been analysed. The specific anti-VV immune response elicited and the persistence of the virus in target tissues were compared in BALB/c mice inoculated with rVVs expressing IL-12 and IL-18 either singly or in combination. Delivery of IL-12 and IL-18 by rVVs in mice induced a significant enhancement in virus clearance from ovaries and spleen, greater than that expected from the sum of action of both cytokines. Virus clearance involved NK and T cells, as demonstrated in mice depleted of NK cells and in immunodeficient SCID animals. Th1 parameters (CD8 T cell response and IgG2a : IgG1 ratios) were increased in mice inoculated with rVVs expressing both IL-12 and IL-18 as compared to those animals receiving a single cytokine. These findings indicate that when IL-12 and IL-18 are delivered by rVVs, different mechanisms involving both the innate and specific arms of the immune system act as mediators in the synergistic action of IL-12 and IL-18, leading to VV clearance. These results are of interest for the design of prophylactic as well as therapeutic VV-based strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19120-0
2003-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir841961.html?itemId=/content/journal/jgv/10.1099/vir.0.19120-0&mimeType=html&fmt=ahah

References

  1. Boelen A., Kwakkel J., Barends M., de Rond L., Dormans J., Kimman T. 2002; Effect of lack of interleukin-4, interleukin-12, interleukin-18 or IFN- γ receptor on virus replication, cytokine response, and lung pathology during respiratory syncytial virus infection in mice. J Med Virol 66:552–560
    [Google Scholar]
  2. Bohn E., Sing A., Zumbihl R., Bielfeldt C., Okamura H., Kurimoto M., Hessemann J., Autenrieth I. B. 1998; IL-18 (IFN- γ -inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 160:299–307
    [Google Scholar]
  3. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A. J. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167
    [Google Scholar]
  4. Cai G., Radzanowski T., Villegas E. N., Kastelein R., Hunter C. A. 2000; Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii . J Immunol 165:2619–2627
    [Google Scholar]
  5. Cavanaugh V. J., Guidotti L. G., Chisari F. V. 1997; Interleukin 12 inhibits hepatitis B virus replication in transgenic mice. J Virol 71:3236–3243
    [Google Scholar]
  6. Coughlin C. M., Salhany K. E., Wysocka M. 7 other authors 1998; Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest 101:1441–1452
    [Google Scholar]
  7. Coutelier J. P., Van Broeck J., Wolf S. F. 1995; Interleukin-12 gene expression after viral infection in the mouse. J Virol 69:1955–1958
    [Google Scholar]
  8. Dallo S., Esteban M. 1987; Isolation and characterization of attenuated mutants of vaccinia virus. Virology 159:408–422
    [Google Scholar]
  9. Dinarello C. A., Novick D., Puren A. J. 7 other authors 1998; Overview of interleukin-18: more than an interferon- γ inducing factor. J Leukoc Biol 63:658–664
    [Google Scholar]
  10. Dybing J. K., Walters N., Pascual D. W. 1999; Role of endogenous IL-18 in resolving wild-type and attenuated Salmonella typhimurium infections. Infect Immun 67:6242–6248
    [Google Scholar]
  11. Fujioka N., Akazawa R., Ohashi K., Fujii M., Ikeda M., Kurimoto M. 1999; Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 73:2401–2409
    [Google Scholar]
  12. Fukao T., Matsuda S., Koyasu S. 2000; Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN- γ production by dendritic cells. J Immunol 164:64–71
    [Google Scholar]
  13. Gazzinelli R. T., Giese N. A., Moore H. C. R. III 1994; In vivo treatment with interleukin 12 protects mice from immune abnormalities observed during murine acquired immunodeficiency syndrome (MAIDS). J Exp Med 180:2199–2208
    [Google Scholar]
  14. Gherardi M. M., Ramirez J. C., Rodriguez D., Rodriguez J. R., Sano G., Zavala F., Esteban M. 1999; IL-12 delivery from recombinant vaccinia virus attenuates the vector and enhances the cellular immune response against HIV-1 Env in a dose-dependent manner. J Immunol 162:6724–6733
    [Google Scholar]
  15. Gherardi M. M., Ramírez J. C., Esteban M. 2001; Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime–booster vaccination regimens. Histol Histopathol 16:655–667
    [Google Scholar]
  16. Harandi A. M., Svennerholm B., Holmgren J., Eriksson K. 2001; Interleukin-12 (IL-12) and IL-18 are important in innate defense against genital herpes simplex virus type 2 infection in mice but are not required for the development of acquired gamma interferon-mediated protective immunity. J Virol 75:6705–6709
    [Google Scholar]
  17. Hodges J. L., Ireland D. D., Reiss C. S. 2001; The role of interleukin-18 in vesicular stomatitis virus infection of the CNS. Viral Immunol 14:181–191
    [Google Scholar]
  18. Hofstra C. L., Van Ark I., Hofman G., Kool M., Nijkamp F. P., Van Oosterhout A. J. M. 1998; Prevention of Th2-like cell responses by coadministration of IL-12 and IL-18 is associated with inhibition of antigen-induced airway hyperresponsiveness, eosinophilia, and serum IgE levels. J Immunol 161:5054–5060
    [Google Scholar]
  19. Kanangat S., Thomas J., Gangappa S., Babu J. S., Rouse B. T. 1996; Herpes simplex virus type 1-mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection.. J Immunol 156:1110–1116
    [Google Scholar]
  20. Kettle S., Alcamí A., Khanna A., Ehret R., Jassoy C., Smith G. L. 1997; Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1 β -converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1 β -induced fever. J Gen Virol 78:677–685
    [Google Scholar]
  21. Kim S. H., Reznikov L. L., Stuyt R. J. L., Selzman C. H., Fantuzzi G., Hoshino T., Young H. A., Dinarello C. A. 2001; Functional reconstitution and regulation of IL-18 activity by the IL-18R β chain. J Immunol 166:148–154
    [Google Scholar]
  22. Kohno K., Katakoa J., Ohtsuki T., Suemoto Y., Okamoto I., Usui M., Ikeda M., Kurimoto M. 1997; IFN- γ -inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 158:1541–1550
    [Google Scholar]
  23. Lauwerys B. R., Renauld J.-C., Houssiau F. A. 1999; Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18. Cytokine 11:822–830
    [Google Scholar]
  24. Lauwerys B. R., Garot N., Renauld J.-C., Houssiau F. A. 2000; Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15 or the combination of IL-12 and IL-18. J Immunol 165:1847–1853
    [Google Scholar]
  25. Mahalingam S., Farber J. M., Karupiah G. 1999; The interferon-inducible chemokines MuMig and Crg-2 exhibit antiviral activity in vivo . J Virol 73:1479–1491
    [Google Scholar]
  26. Micallef M. J., Ohtsuki T., Kohno K. 9 other authors 1996; Interferon- γ -inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon- γ production. Eur J Immunol 26:1647–1651
    [Google Scholar]
  27. Miyahira Y., Murata K., Rodríguez D., Rodríguez J. R., Esteban M., Rodrigues M. M., Zavala F. 1995; Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181:45–54
    [Google Scholar]
  28. Munder M., Mallo M., Eichmann K., Modolell M. 1998; Murine macrophages secrete interferon- γ upon combined stimulation with interleukin (IL) 12 and IL-18: A novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108
    [Google Scholar]
  29. Nakamura S., Otani T., Ijiri Y., Motoda R., Kurimoto M., Orita K. 2000; IFN- γ -dependent and -independent mechanisms in adverse effects caused by concomitant administration of IL-18 and IL-12. J Immunol 164:3330–3336
    [Google Scholar]
  30. Nakanishi K., Yoshimoto T., Tsutsui H., Okamura H. 2001; Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19:423–474
    [Google Scholar]
  31. Okamoto I., Kohno K., Tanimoto T., Ikegami H., Kurimoto M. 1999; Development of CD8+ effector T cells is differentially regulated by IL-18 and IL-12. J Immunol 162:3202–3211
    [Google Scholar]
  32. Okamura H., Tsutsui H., Komatsu T. other authors 1995; Cloning of a new cytokine that induces IFN- γ production by T cells. Nature 378:88–91
    [Google Scholar]
  33. Orange J. S., Biron C. A. 1996; An absolute and restricted requirement for IL-12 in natural killer cell IFN- γ production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156:1138–1142
    [Google Scholar]
  34. Orange J. S., Wang B., Terhorst C., Biron C. A. 1995; Requirement for natural killer cell-produced interferon γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182:1045–1056
    [Google Scholar]
  35. Osaki T., Peron J. M., Cai Q., Okamura H., Robbins P. D., Kurimoto M., Lotze M. T., Tahara H. 1998; IFN- γ -inducing factor/IL-18 administration mediates IFN- γ and IL-12-independent antitumor effects. J Immunol 160:1742–1749
    [Google Scholar]
  36. Ozmen L., Aguet M., Trinchieri G., Garotta G. 1995; The in vivo antiviral activity of interleukin-12 is mediated by γ interferon. J Virol 69:8147–8150
    [Google Scholar]
  37. Pien G. C., Satoskar A. R., Takeda K., Akira S., Biron C. A. 2000; Cutting edge: selective IL-18 requirements for induction of compartmental IFN- γ response during viral infection. J Immunol 165:4787–4791
    [Google Scholar]
  38. Qureshi M. H., Zhang T., Koguchi Y., Nakashima K., Okamura H., Kurimoto M., Kawakami K. 1999; Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans . Eur J Immunol 29:643–649
    [Google Scholar]
  39. Ramírez J. C., Gherardi M. M., Esteban M. 2000; The biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 74:923–933
    [Google Scholar]
  40. Ramsay A. J., Ruby J., Ramshaw I. A. 1993; A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 14:155–157
    [Google Scholar]
  41. Ramshaw I. A., Ramsay A. J., Karupiah G., Rolph M. S., Mahalingam S., Ruby J. C. 1997; Cytokines and immunity to viral infections. Immunol Rev 159:119–135
    [Google Scholar]
  42. Rodríguez J. F., Rodríguez D., Rodríguez J. R., McGowan E. B., Esteban M. 1988; Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proc Natl Acad Sci U S A 85:1667–1671
    [Google Scholar]
  43. Rodríguez J. R., Risco C., Carrascosa J. L., Esteban M., Rodríguez D. 1997; Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. J Virol 71:1821–1833
    [Google Scholar]
  44. Sareneva T., Matikainen S., Kurimoto M., Julkunen I. 1998; Influenza A virus-induced IFN- α / β and IL-18 synergistically enhance IFN- γ gene expression in human T cells. J Immunol 160:6032–6038
    [Google Scholar]
  45. Smith V. P., Bryant N. A., Alcamí A. 2000; Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230
    [Google Scholar]
  46. Symons J. A., Adams E., Tscharke D. C., Reading P. C., Waldmann H., Smith G. L. 2002; The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83:2833–2844
    [Google Scholar]
  47. Takeda K., Tsutsui H., Yoshimoto T., Adachi O., Yoshida N., Kishimoto T., Okamura H., Nakanishi K., Akira S. 1998; Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8:383–390
    [Google Scholar]
  48. Tanaka-Kataoka M. T., Kunikata T., Takayama S., Iwaki K., Ohashi K., Ikeda M., Kurimoto M. 1999; In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection. Cytokine 11:593–599
    [Google Scholar]
  49. Tomura M., Maruo S., Mu J. 8 other authors 1998; Differential capacities of CD4+, CD8+, and CD4CD8 T cell subsets to express IL-18 receptor and produce IFN- γ in response to IL-18. J Immunol 160:3759–3765
    [Google Scholar]
  50. van den Broek M., Bachmann M. F., Köhler G., Barner M., Escher R., Zinkernagel R., Kopf M. 2000; IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN- γ and nitric oxide synthetase 2. J Immunol 164:371–378
    [Google Scholar]
  51. Xiang Y., Moss B. 1999; IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins. Proc Natl Acad Science U S A 96:11537–11542
    [Google Scholar]
  52. Yamanaka K., Hara I., Nagai H., Miyake H., Gohji K., Micallef M. J., Kurimoto M., Arakawa S., Kamidono S. 1999; Synergistic antitumor effects of interleukin-12 gene transfer and systemic administration of interleukin-18 in a mouse bladder cancer model. Cancer Immunol Immunother 48:297–302
    [Google Scholar]
  53. Yoshimoto T., Takeda K., Tanaka T. Ohkusu K., Kashiwamura S., Okamura H., Akira S., Nakanishi K. 1998; IL-12 upregulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN- γ production. J Immunol 161:3400–3407
    [Google Scholar]
  54. Zhang Y., Wang Y., Gilmore X., Xu K., Mbawuike I. N. 2001; Independent and synergistic effects of interleukin-18 and interleukin-12 in augmenting cytotoxic T lymphocyte responses and IFN- γ production in aging. J Interferon Cytokine Res 21:843–850
    [Google Scholar]
  55. Zinkernagel R. M. 1996; Immunology taught by viruses. Science 271:173–178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19120-0
Loading
/content/journal/jgv/10.1099/vir.0.19120-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed