1887

Abstract

Development of a protective host response against intracellular pathogens requires innate and cell-mediated immune responses, with cytokines playing an important role in host defences. Different studies in mice have shown that IL-12 can promote protective immunity to a variety of viruses but, during virus infection, little is known about the function of IL-18 alone or in combination with IL-12. Using recombinant vaccinia viruses (rVVs) expressing IL-12 and IL-18, the antiviral role of both cytokines in mice has been analysed. The specific anti-VV immune response elicited and the persistence of the virus in target tissues were compared in BALB/c mice inoculated with rVVs expressing IL-12 and IL-18 either singly or in combination. Delivery of IL-12 and IL-18 by rVVs in mice induced a significant enhancement in virus clearance from ovaries and spleen, greater than that expected from the sum of action of both cytokines. Virus clearance involved NK and T cells, as demonstrated in mice depleted of NK cells and in immunodeficient SCID animals. Th1 parameters (CD8 T cell response and IgG2a : IgG1 ratios) were increased in mice inoculated with rVVs expressing both IL-12 and IL-18 as compared to those animals receiving a single cytokine. These findings indicate that when IL-12 and IL-18 are delivered by rVVs, different mechanisms involving both the innate and specific arms of the immune system act as mediators in the synergistic action of IL-12 and IL-18, leading to VV clearance. These results are of interest for the design of prophylactic as well as therapeutic VV-based strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19120-0
2003-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir841961.html?itemId=/content/journal/jgv/10.1099/vir.0.19120-0&mimeType=html&fmt=ahah

References

  1. Boelen, A., Kwakkel, J., Barends, M., de Rond, L., Dormans, J. & Kimman, T. ( 2002; ). Effect of lack of interleukin-4, interleukin-12, interleukin-18 or IFN-γ receptor on virus replication, cytokine response, and lung pathology during respiratory syncytial virus infection in mice. J Med Virol 66, 552–560.[CrossRef]
    [Google Scholar]
  2. Bohn, E., Sing, A., Zumbihl, R., Bielfeldt, C., Okamura, H., Kurimoto, M., Hessemann, J. & Autenrieth, I. B. ( 1998; ). IL-18 (IFN-γ-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 160, 299–307.
    [Google Scholar]
  3. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K. & O'Neill, L. A. J. ( 2000; ). A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97, 10162–10167.[CrossRef]
    [Google Scholar]
  4. Cai, G., Radzanowski, T., Villegas, E. N., Kastelein, R. & Hunter, C. A. ( 2000; ). Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J Immunol 165, 2619–2627.[CrossRef]
    [Google Scholar]
  5. Cavanaugh, V. J., Guidotti, L. G. & Chisari, F. V. ( 1997; ). Interleukin 12 inhibits hepatitis B virus replication in transgenic mice. J Virol 71, 3236–3243.
    [Google Scholar]
  6. Coughlin, C. M., Salhany, K. E., Wysocka, M. & 7 other authors ( 1998; ). Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest 101, 1441–1452.[CrossRef]
    [Google Scholar]
  7. Coutelier, J. P., Van Broeck, J. & Wolf, S. F. ( 1995; ). Interleukin-12 gene expression after viral infection in the mouse. J Virol 69, 1955–1958.
    [Google Scholar]
  8. Dallo, S. & Esteban, M. ( 1987; ). Isolation and characterization of attenuated mutants of vaccinia virus. Virology 159, 408–422.[CrossRef]
    [Google Scholar]
  9. Dinarello, C. A., Novick, D., Puren, A. J. & 7 other authors ( 1998; ). Overview of interleukin-18: more than an interferon-γ inducing factor. J Leukoc Biol 63, 658–664.
    [Google Scholar]
  10. Dybing, J. K., Walters, N. & Pascual, D. W. ( 1999; ). Role of endogenous IL-18 in resolving wild-type and attenuated Salmonella typhimurium infections. Infect Immun 67, 6242–6248.
    [Google Scholar]
  11. Fujioka, N., Akazawa, R., Ohashi, K., Fujii, M., Ikeda, M. & Kurimoto, M. ( 1999; ). Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 73, 2401–2409.
    [Google Scholar]
  12. Fukao, T., Matsuda, S. & Koyasu, S. ( 2000; ). Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-γ production by dendritic cells. J Immunol 164, 64–71.[CrossRef]
    [Google Scholar]
  13. Gazzinelli, R. T., Giese, N. A. & Moore, H. C. R., III ( 1994; ). In vivo treatment with interleukin 12 protects mice from immune abnormalities observed during murine acquired immunodeficiency syndrome (MAIDS). J Exp Med 180, 2199–2208.[CrossRef]
    [Google Scholar]
  14. Gherardi, M. M., Ramirez, J. C., Rodriguez, D., Rodriguez, J. R., Sano, G., Zavala, F. & Esteban, M. ( 1999; ). IL-12 delivery from recombinant vaccinia virus attenuates the vector and enhances the cellular immune response against HIV-1 Env in a dose-dependent manner. J Immunol 162, 6724–6733.
    [Google Scholar]
  15. Gherardi, M. M., Ramírez, J. C. & Esteban, M. ( 2001; ). Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime–booster vaccination regimens. Histol Histopathol 16, 655–667.
    [Google Scholar]
  16. Harandi, A. M., Svennerholm, B., Holmgren, J. & Eriksson, K. ( 2001; ). Interleukin-12 (IL-12) and IL-18 are important in innate defense against genital herpes simplex virus type 2 infection in mice but are not required for the development of acquired gamma interferon-mediated protective immunity. J Virol 75, 6705–6709.[CrossRef]
    [Google Scholar]
  17. Hodges, J. L., Ireland, D. D. & Reiss, C. S. ( 2001; ). The role of interleukin-18 in vesicular stomatitis virus infection of the CNS. Viral Immunol 14, 181–191.[CrossRef]
    [Google Scholar]
  18. Hofstra, C. L., Van Ark, I., Hofman, G., Kool, M., Nijkamp, F. P. & Van Oosterhout, A. J. M. ( 1998; ). Prevention of Th2-like cell responses by coadministration of IL-12 and IL-18 is associated with inhibition of antigen-induced airway hyperresponsiveness, eosinophilia, and serum IgE levels. J Immunol 161, 5054–5060.
    [Google Scholar]
  19. Kanangat, S., Thomas, J., Gangappa, S., Babu, J. S. & Rouse, B. T. ( 1996; ). Herpes simplex virus type 1-mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection. J Immunol 156, 1110–1116.
    [Google Scholar]
  20. Kettle, S., Alcamí, A., Khanna, A., Ehret, R., Jassoy, C. & Smith, G. L. ( 1997; ). Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J Gen Virol 78, 677–685.
    [Google Scholar]
  21. Kim, S. H., Reznikov, L. L., Stuyt, R. J. L., Selzman, C. H., Fantuzzi, G., Hoshino, T., Young, H. A. & Dinarello, C. A. ( 2001; ). Functional reconstitution and regulation of IL-18 activity by the IL-18Rβ chain. J Immunol 166, 148–154.[CrossRef]
    [Google Scholar]
  22. Kohno, K., Katakoa, J., Ohtsuki, T., Suemoto Y., Okamoto, I., Usui, M., Ikeda, M. & Kurimoto, M. ( 1997; ). IFN-γ-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 158, 1541–1550.
    [Google Scholar]
  23. Lauwerys, B. R., Renauld, J.-C. & Houssiau, F. A. ( 1999; ). Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18. Cytokine 11, 822–830.[CrossRef]
    [Google Scholar]
  24. Lauwerys, B. R., Garot, N., Renauld, J.-C. & Houssiau, F. A. ( 2000; ). Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15 or the combination of IL-12 and IL-18. J Immunol 165, 1847–1853.[CrossRef]
    [Google Scholar]
  25. Mahalingam, S., Farber, J. M. & Karupiah, G. ( 1999; ). The interferon-inducible chemokines MuMig and Crg-2 exhibit antiviral activity in vivo. J Virol 73, 1479–1491.
    [Google Scholar]
  26. Micallef, M. J., Ohtsuki, T., Kohno, K. & 9 other authors ( 1996; ). Interferon-γ-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-γ production. Eur J Immunol 26, 1647–1651.[CrossRef]
    [Google Scholar]
  27. Miyahira, Y., Murata, K., Rodríguez, D., Rodríguez, J. R., Esteban, M., Rodrigues, M. M. & Zavala, F. ( 1995; ). Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181, 45–54.[CrossRef]
    [Google Scholar]
  28. Munder, M., Mallo, M., Eichmann, K. & Modolell, M. ( 1998; ). Murine macrophages secrete interferon-γ upon combined stimulation with interleukin (IL) 12 and IL-18: A novel pathway of autocrine macrophage activation. J Exp Med 187, 2103–2108.[CrossRef]
    [Google Scholar]
  29. Nakamura, S., Otani, T., Ijiri, Y., Motoda, R., Kurimoto, M. & Orita, K. ( 2000; ). IFN-γ-dependent and -independent mechanisms in adverse effects caused by concomitant administration of IL-18 and IL-12. J Immunol 164, 3330–3336.[CrossRef]
    [Google Scholar]
  30. Nakanishi, K., Yoshimoto, T., Tsutsui, H. & Okamura, H. ( 2001; ). Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19, 423–474.[CrossRef]
    [Google Scholar]
  31. Okamoto, I., Kohno, K., Tanimoto, T., Ikegami, H. & Kurimoto, M. ( 1999; ). Development of CD8+ effector T cells is differentially regulated by IL-18 and IL-12. J Immunol 162, 3202–3211.
    [Google Scholar]
  32. Okamura, H., Tsutsui, H., Komatsu, T. & other authors ( 1995; ). Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–91.[CrossRef]
    [Google Scholar]
  33. Orange, J. S. & Biron, C. A. ( 1996; ). An absolute and restricted requirement for IL-12 in natural killer cell IFN-γ production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 156, 1138–1142.
    [Google Scholar]
  34. Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. ( 1995; ). Requirement for natural killer cell-produced interferon γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182, 1045–1056.[CrossRef]
    [Google Scholar]
  35. Osaki, T., Peron, J. M., Cai, Q., Okamura, H., Robbins, P. D., Kurimoto, M., Lotze, M. T. & Tahara, H. ( 1998; ). IFN-γ-inducing factor/IL-18 administration mediates IFN-γ and IL-12-independent antitumor effects. J Immunol 160, 1742–1749.
    [Google Scholar]
  36. Ozmen, L., Aguet, M., Trinchieri, G. & Garotta, G. ( 1995; ). The in vivo antiviral activity of interleukin-12 is mediated by γ interferon. J Virol 69, 8147–8150.
    [Google Scholar]
  37. Pien, G. C., Satoskar, A. R., Takeda, K., Akira, S. & Biron, C. A. ( 2000; ). Cutting edge: selective IL-18 requirements for induction of compartmental IFN-γ response during viral infection. J Immunol 165, 4787–4791.[CrossRef]
    [Google Scholar]
  38. Qureshi, M. H., Zhang, T., Koguchi, Y., Nakashima, K., Okamura, H., Kurimoto, M. & Kawakami, K. ( 1999; ). Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans. Eur J Immunol 29, 643–649.[CrossRef]
    [Google Scholar]
  39. Ramírez, J. C., Gherardi, M. M. & Esteban, M. ( 2000; ). The biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J Virol 74, 923–933.[CrossRef]
    [Google Scholar]
  40. Ramsay, A. J., Ruby, J. & Ramshaw, I. A. ( 1993; ). A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 14, 155–157.[CrossRef]
    [Google Scholar]
  41. Ramshaw, I. A., Ramsay, A. J., Karupiah, G., Rolph, M. S., Mahalingam, S. & Ruby, J. C. ( 1997; ). Cytokines and immunity to viral infections. Immunol Rev 159, 119–135.[CrossRef]
    [Google Scholar]
  42. Rodríguez, J. F., Rodríguez, D., Rodríguez, J. R., McGowan, E. B. & Esteban, M. ( 1988; ). Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proc Natl Acad Sci U S A 85, 1667–1671.[CrossRef]
    [Google Scholar]
  43. Rodríguez, J. R., Risco, C., Carrascosa, J. L., Esteban, M. & Rodríguez, D. ( 1997; ). Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. J Virol 71, 1821–1833.
    [Google Scholar]
  44. Sareneva, T., Matikainen, S., Kurimoto, M. & Julkunen, I. ( 1998; ). Influenza A virus-induced IFN-α/β and IL-18 synergistically enhance IFN-γ gene expression in human T cells. J Immunol 160, 6032–6038.
    [Google Scholar]
  45. Smith, V. P., Bryant, N. A. & Alcamí, A. ( 2000; ). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81, 1223–1230.
    [Google Scholar]
  46. Symons, J. A., Adams, E., Tscharke, D. C., Reading, P. C., Waldmann, H. & Smith, G. L. ( 2002; ). The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83, 2833–2844.
    [Google Scholar]
  47. Takeda, K., Tsutsui, H., Yoshimoto, T., Adachi, O., Yoshida, N., Kishimoto, T., Okamura, H., Nakanishi, K. & Akira, S. ( 1998; ). Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383–390.[CrossRef]
    [Google Scholar]
  48. Tanaka-Kataoka, M. T., Kunikata, T., Takayama, S., Iwaki, K., Ohashi, K., Ikeda, M. & Kurimoto, M. ( 1999; ). In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection. Cytokine 11, 593–599.[CrossRef]
    [Google Scholar]
  49. Tomura, M., Maruo, S., Mu, J. & 8 other authors ( 1998; ). Differential capacities of CD4+, CD8+, and CD4CD8 T cell subsets to express IL-18 receptor and produce IFN-γ in response to IL-18. J Immunol 160, 3759–3765.
    [Google Scholar]
  50. van den Broek, M., Bachmann, M. F., Köhler, G., Barner, M., Escher, R., Zinkernagel, R. & Kopf, M. ( 2000; ). IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-γ and nitric oxide synthetase 2. J Immunol 164, 371–378.[CrossRef]
    [Google Scholar]
  51. Xiang, Y. & Moss, B. ( 1999; ). IL-18 binding and inhibition of interferon γ induction by human poxvirus-encoded proteins. Proc Natl Acad Science U S A 96, 11537–11542.[CrossRef]
    [Google Scholar]
  52. Yamanaka, K., Hara, I., Nagai, H., Miyake, H., Gohji, K., Micallef, M. J., Kurimoto, M., Arakawa, S. & Kamidono, S. ( 1999; ). Synergistic antitumor effects of interleukin-12 gene transfer and systemic administration of interleukin-18 in a mouse bladder cancer model. Cancer Immunol Immunother 48, 297–302.[CrossRef]
    [Google Scholar]
  53. Yoshimoto, T., Takeda, K., Tanaka, T. Ohkusu K., Kashiwamura, S., Okamura, H., Akira, S. & Nakanishi, K. ( 1998; ). IL-12 upregulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J Immunol 161, 3400–3407.
    [Google Scholar]
  54. Zhang, Y., Wang, Y., Gilmore, X., Xu, K. & Mbawuike, I. N. ( 2001; ). Independent and synergistic effects of interleukin-18 and interleukin-12 in augmenting cytotoxic T lymphocyte responses and IFN-γ production in aging. J Interferon Cytokine Res 21, 843–850.[CrossRef]
    [Google Scholar]
  55. Zinkernagel, R. M. ( 1996; ). Immunology taught by viruses. Science 271, 173–178.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19120-0
Loading
/content/journal/jgv/10.1099/vir.0.19120-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error