1887

Abstract

Exploitation of the intracellular virus machinery within infected cells to drive an anti-viral gene therapy vector may prove to be a feasible alternative to reducing viral loads or overall virus infectivity while propagating the spread of a therapeutic vector. Using a simian immunodeficiency virus (SIV)-based system, it was shown that the pre-existing retroviral biological machinery within SIV-infected cells can drive the expression of an anti-SIV ribozyme and mobilize the vector to transduce neighbouring cells. The anti-SIV ribozyme vector was derived from the SIV backbone and contained the 5′- and 3′LTR including transactivation-response, Ψ and Rev-responsive elements, thus requiring Tat and Rev and therefore limiting expression to SIV-infected cells. The data presented here show an early reduction in SIV p27 levels in the presence of the anti-SIV ribozyme, as well as successful mobilization (vector RNA constituted ∼17 % of the total virus pool) and spread of the vector containing this ribozyme. These findings provide direct evidence that mobilization of an anti-retroviral SIV gene therapy vector is feasible in the SIV/macaque model.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19106-0
2004-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/6/vir851489.html?itemId=/content/journal/jgv/10.1099/vir.0.19106-0&mimeType=html&fmt=ahah

References

  1. Akhtar S., James H., Gibson I. 1995; Molecular DIY with hairpins and hammerheads. Nat Med 1:300–302 [CrossRef]
    [Google Scholar]
  2. Amarzguioui M., Prydz H. 1998; Hammerhead ribozyme design and application. Cell Mol Life Sci 54:1175–1202 [CrossRef]
    [Google Scholar]
  3. Aronoff R., Linial M. 1991; Specificity of retroviral RNA packaging. J Virol 65:71–80
    [Google Scholar]
  4. Arya S. K. 1988; Human and simian immunodeficiency retroviruses: activation and differential transactivation of gene expression. AIDS Res Hum Retrovir 4:175–186 [CrossRef]
    [Google Scholar]
  5. Barinaga M. 1994; Steps taken toward improved vectors for gene therapy. Science 266:1326 [CrossRef]
    [Google Scholar]
  6. Bauer G., Valdez P., Kearns K., Bahner I., Wen S. F., Zaia J. A., Kohn D. B. 1997; Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood 89:2259–2267
    [Google Scholar]
  7. Buchschacher G. L., Wong-Staal F. 2000; Development of lentiviral vectors for gene therapy for human diseases. Blood 95:2499–2504
    [Google Scholar]
  8. Bukovsky A. A., Song J., Naldini L. 1999; Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73:7987–7092
    [Google Scholar]
  9. Cech T. R. 1987; The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539 [CrossRef]
    [Google Scholar]
  10. Coffin J. M. 1995; HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483–489 [CrossRef]
    [Google Scholar]
  11. Coffin J. M. 1996; HIV viral dynamics. AIDS 10 (Suppl. 3):S75–84 [CrossRef]
    [Google Scholar]
  12. Corbeau P., Wong-Staal F. 1998; Anti-HIV effects of HIV vectors. Virology 243:268–274 [CrossRef]
    [Google Scholar]
  13. Desrosiers R. C., Lifson J. D., Gibbs J. S., Czajak S. C., Howe A. Y. M., Arthur L. O., Johnson R. P. 1998; Identification of highly attenuated mutants of simian immunodeficiency virus. J Virol 72:1431–1437
    [Google Scholar]
  14. Dropulic B. M. H., Pitha P. M. 1996; A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread. Proc Natl Acad Sci U S A 93:11103–11108 [CrossRef]
    [Google Scholar]
  15. Dropulic B., Lin N. H., Martin M. A., Jeang K. 1992; Functional characterization of a U5 ribozyme: intracellular suppression of HIV-1 expression. J Virol 66:1432–1441
    [Google Scholar]
  16. Evans J. T., Garcia J. V. 2000; Lentivirus vector mobilization and spread by human immunodeficiency virus. Hum Gene Ther 11:2331–2339 [CrossRef]
    [Google Scholar]
  17. Garzino-Demo R. C. G., Arya S. K. 1995; Human immunodeficiency virus type 2 (HIV-2): packaging signal and associated negative regulatory element. Hum Gene Ther 2:177–184
    [Google Scholar]
  18. Gazzard B. 1999; The picture of future therapy. Int J Clin Pract (Suppl.) 103:145–148
    [Google Scholar]
  19. Geigenmuller U., Linial M. L. 1996; Specific binding of human immunodeficiency virus type 1 (HIV-1) Gag-derived proteins to a 5′ HIV-1 genomic RNA sequence. J Virol 70:667–671
    [Google Scholar]
  20. Gibbs J. S., Regier D. A., Desrosiers R. C. 1994; Construction and in vitro properties of SIVmac mutants with deletions in “nonessential” genes. AIDS Res Hum Retrovir 10:607–616 [CrossRef]
    [Google Scholar]
  21. James H. A., Gibson I. 1998; The therapeutic potential of ribozymes. Blood 91:371–382
    [Google Scholar]
  22. Joshi S., Shi-Fa D., Liam S. E. 1997; Co-packaging of non-vector RNAs generates replication-defective retroviral vector particles: a novel approach for blocking retrovirus replication. Nucleic Acids Res 25:3199–3204 [CrossRef]
    [Google Scholar]
  23. Kim V. N., Mitrophanous K., Kingsman S. M., Kingsman A. J. 1998; Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72:811–816
    [Google Scholar]
  24. Klimatcheva E., Planelles V., Day S. L., Fulreader F., Renda M. J., Rosenblatt J. 2001; Defective lentiviral vectors are efficiently trafficked by HIV-1 and inhibit its replication. Mol Ther 3:928–939 [CrossRef]
    [Google Scholar]
  25. Leavitt M. C., Yu M., Yamada O., Kraus G., Looney D., Poeschla E., Wong-Staal F. 1994; Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum Gene Ther 5:1115–1120 [CrossRef]
    [Google Scholar]
  26. Lohman B. L., Higgins J., Marthas M. L., Marx P. A., Pedersen N. C. 1991; Development of simian immunodeficiency virus isolation, titration, and neutralization assays which use whole blood from rhesus monkeys and an antigen capture enzyme-linked immunosorbent assay. J Clin Microbiol 29:2187–2192
    [Google Scholar]
  27. Mangeot P. E., Negre D., Dubois B., Winter A. J., Leissner P., Mehtali M., Kaiserlian D., Cosset F. L., Darlix J. L. 2000; Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 74:8307–8315 [CrossRef]
    [Google Scholar]
  28. Mangeot P. E., Duperrier K., Negre D., Boson B., Rigal D., Cosset F. L., Darlix J. L. 2002; High levels of transduction of human dendritic cells with optimized SIV vectors. Mol Ther 5:283–290 [CrossRef]
    [Google Scholar]
  29. Marschall P., Thomson J. B., Eckstein F. 1994; Inhibition of gene expression with ribozymes. Cell Mol Neurobiol 14:523–538 [CrossRef]
    [Google Scholar]
  30. Mautino M. R. 2002; Lentiviral vectors for gene therapy of HIV-1 infection. Curr Gene Ther 2:23–43 [CrossRef]
    [Google Scholar]
  31. Mautino M. R., Keiser N., Morgan R. A. 2001; Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by HIV-1-based lentivirus vectors expressing transdominant Rev. J Virol 75:3590–3599 [CrossRef]
    [Google Scholar]
  32. Miller A. D., Wolgamot G. 1997; Murine retroviruses use at least six different receptors for entry into Mus dunni cells. J Virol 71:4531–4535
    [Google Scholar]
  33. Milman G., Herzberg M. 1981; Efficient DNA transfection and rapid assay for thymidine kinase activity and viral antigenic determinants. Somat Cell Genet 7:161–170
    [Google Scholar]
  34. Naidu Y. M., Kestler H. W., Li Y. 8 other authors 1988; Characterization of infectious molecular clones of simian immunodeficiency virus (SIVmac) and human immunodeficiency virus type 2: persistent infection of rhesus monkeys with molecularly cloned SIVmac. J Virol 62:4691–4696
    [Google Scholar]
  35. Parolin C., Taddeo B., Palu G., Sodroski J. 1996; Use of cis- and trans-acting viral regulatory sequences to improve expression of human immunodeficiency virus vectors in human lymphocytes. Virology 222:415–422 [CrossRef]
    [Google Scholar]
  36. Regier D. A., Desrosiers R. C. 1990; The complete nucleotide sequence of a pathogenic molecular clone of simian immunodeficiency virus. AIDS Res Hum Retrovir 6:1221–1231
    [Google Scholar]
  37. Rossi J. 2000; Ribozyme therapy for HIV infection. Adv Drug Deliv Rev 44:71–78 [CrossRef]
    [Google Scholar]
  38. Shafer R. W., Vuitton D. A. 1999; Highly active antiretroviral therapy (HAART) for the treatment of infection with human immunodeficiency virus type 1. Biomed Pharmacother 53:73–86 [CrossRef]
    [Google Scholar]
  39. Sykes P. J., Neoh S. H., Brisco M. J., Hughes E., Condon J., Morley A. A. 1992; Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449
    [Google Scholar]
  40. Weinberger L. S., Schaffer D. V., Arkin A. P. 2003; Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection. J Virol 77:10028–10036 [CrossRef]
    [Google Scholar]
  41. Wu X., Wakefield J. K., Liu H., Kappes J. C. 2001; Analysis of lenti- and trans-lentiviral vector genetic recombination. Dev Biol 106:237–248
    [Google Scholar]
  42. Yu M., Leavitt M. C., Maruyama M., Yamada O., Young D., Ho A. D., Wong-Staal F. 1995; Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 92:699–703 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19106-0
Loading
/content/journal/jgv/10.1099/vir.0.19106-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error