1887

Abstract

In this study, the cell cycle modulation of retrovirus vector production and transduction was analysed. Retrovirus vector expression was found to be similar in all phases of the cell cycle and, in contrast to some other virus promoters shown previously to be upregulated by G/M arrest, Moloney murine leukaemia virus LTR-driven expression was upregulated neither by G/M growth arrest nor by G/S growth arrest. In contrast, cultures enriched for S phase cells produced more infectious virions, apparently by modulation of stages consequent to provirus expression. In terms of retrovirus transduction, limitations appear to be slow progression through the cell cycle and short half-life of the virus. Synchronization of cells prior to mitosis can increase transduction efficiency. Cell cycle modulation can be used to modify retrovirus vector production and transduction and can allow short transduction periods.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19099-0
2003-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/11/vir843131.html?itemId=/content/journal/jgv/10.1099/vir.0.19099-0&mimeType=html&fmt=ahah

References

  1. Abonour R., Williams D. A., Einborn L. 15 other authors 2000; Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 6:652–658
    [Google Scholar]
  2. Agarwal M., Austin T. W., Morel F., Chen J., Bohnlein E., Plavec I. 1998; Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J Virol 72:3720–3728
    [Google Scholar]
  3. Andreadis S. T., Brott D., Fuller A. O., Palsson B. O. 1997; Moloney murine leukemia virus-derived retroviral vectors decay intracellularly with a half-life in the range of 5·5 to 7·5 hours. J Virol 71:7541–7548
    [Google Scholar]
  4. Dando J. S., Aiuti A., Deola S., Ficara F., Bordignon C. 2001; Optimisation of retroviral supernatant production conditions for the genetic modification of human CD34+ cells. J Gene Med 3:219–227
    [Google Scholar]
  5. Dick J. E. 2000; Gene therapy turns the corner. Nat Med 6:624–626
    [Google Scholar]
  6. Dolnikov A., Millington M., Sun L.-Q., Symonds G. 2000; Induced p21 WAF1 expression acts to reverse myc myelomonocytic cell transformation. Cancer Gene Ther 7:1491–1503
    [Google Scholar]
  7. Frisa P. S., Jacobberger J. W. 2002; Cell density related gene expression: SV40 large T antigen levels in immortalized astrocyte lines. BMC Cell Biol 3:10
    [Google Scholar]
  8. Goh W. C., Rogel M. E., Kinsey C. M., Michael S. F., Fultz P. N., Nowak M. A., Hahn B. H., Emerman M. 1998; HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo . Nat Med 4:65–71
    [Google Scholar]
  9. Hawley R. G., Lieu F. H., Fong A. Z., Hawley T. S. 1994; Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1:136–138
    [Google Scholar]
  10. Holt S. E., Aisner D. L., Shay J. W., Wright W. E. 1997; Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci U S A 94:10687–10692
    [Google Scholar]
  11. Huberman J. A. 1981; New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase alpha. Cell 23:647–648
    [Google Scholar]
  12. Karn J., Watson J. V., Lowe A. D., Green S. M., Vedeckis W. 1989; Regulation of cell cycle duration by c- myc levels. Oncogene 4:773–787
    [Google Scholar]
  13. Lewis P. F., Emerman M. 1994; Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516
    [Google Scholar]
  14. Maio J. J., Graham G. J., Brown F. L. 1995; Induction of G2 arrest and gene expression by 2-aminopurine in human U937 promonocytic-macrophage cells. Exp Cell Res 219:442–448
    [Google Scholar]
  15. Malech H. L. 2000; Use of serum-free medium with fibronectin fragment enhanced transduction in a system of gas permeable plastic containers to achieve high levels of retrovirus transduction at clinical scale. Stem Cells 18:155–156
    [Google Scholar]
  16. McTaggart S., Al-Rubeai M. 2000; Effects of culture parameters on the production of retroviral vectors by human packaging cell line. Biotechnol Prog 16:859–865
    [Google Scholar]
  17. Miller A. D. 1992; Retroviral vectors. Curr Top Microbiol Immunol 158:1–24
    [Google Scholar]
  18. Miller D. G., Adam M. A., Miller A. D. 1990; Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242 erratum 12, 433
    [Google Scholar]
  19. Morgan J. R., Ledoux J. M., Snow R. G., Tompkins R. G., Yarmush M. L. 1995; Retrovirus infection: effect of time and target cell number. J Virol 69:6994–7000
    [Google Scholar]
  20. Moritz T., Dutt P., Xiao X., Carstanjen D., Vik T., Hanenberg H., Williams D. A. 1996; Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood 88:855–862
    [Google Scholar]
  21. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. 1993; Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90:8392–8396
    [Google Scholar]
  22. Pollok K. E., van Der Loo J. C., Cooper R. J. 8 other authors 2001; Differential transduction efficiency of SCID-repopulating cells derived from umbilical cord blood and granulocyte colony-stimulating factor-mobilized peripheral blood. Hum Gene Ther 12:2095–2108
    [Google Scholar]
  23. Reeves L., Smucker P., Cornetta K. 2000; Packaging cell line characteristics and optimizing retroviral vector titer: the National Gene Vector Laboratory experience. Hum Gene Ther 11:2093–2103
    [Google Scholar]
  24. Roe T., Reynolds T. C., Yu G., Brown P. O. 1993; Integration of murine leukemia virus DNA depends on mitosis. EMBO J 12:2099–2108
    [Google Scholar]
  25. Romano G., Pacilio C., Giordano A. 1999; Gene transfer technology in therapy: current applications and future goals. Stem Cells 17:191–202
    [Google Scholar]
  26. Shounan Y., Dolnikov A., MacKenzie K. L., Miller M., Chan Y. Y., Symonds G. 1996; Retroviral transduction of hematopoietic progenitor cells with mutant p53 promotes survival and proliferation, modifies differentiation potential and inhibits apoptosis. Leukemia 10:1619–1628
    [Google Scholar]
  27. Sladek T. L., Jacobberger J. W. 1998; Cell cycle analysis of retroviral vector gene expression during early infection. Cytometry 31:235–241
    [Google Scholar]
  28. Traycoff C. M., Orazi A., Ladd A. C., Rice S., McMahel J., Srour E. F. 1998; Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells. Exp Hematol 26:53–62
    [Google Scholar]
  29. Williams C. D., Linch D. C., Watts M. J., Thomas N. S. 1997; Characterization of cell cycle status and E2F complexes in mobilized CD34+ cells before and after cytokine stimulation. Blood 90:194–203
    [Google Scholar]
  30. Xu R., Reems J. A. 2001; Umbilical cord blood progeny cells that retain a CD34+ phenotype after ex vivo expansion have less engraftment potential than unexpanded CD34+ cells. Transfusion 41:213–218
    [Google Scholar]
  31. Zieve G. W., Turnbull D., Mullins J. M., McIntosh J. R. 1980; Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res 126:397–405
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19099-0
Loading
/content/journal/jgv/10.1099/vir.0.19099-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error