1887

Abstract

Human papillomavirus type 16 (HPV-16)-associated vulval intraepithelial neoplasia (VIN) is frequently a chronic, multifocal high-grade condition with an appreciable risk of progression to vulval cancer. The requirement to treat women with VIN has recently stimulated the use of immunotherapy with E6/E7 oncogene vaccines. Animal models have shown that E2 may also be a useful vaccine target for HPV-associated disease; however, little is known about E2 immunity in humans. This study investigated the prevalence of HPV-16 E2-specific serological and T-cell responses in 18 women with HPV-16-associated VIN and 17 healthy volunteers. E2 responses were determined by full-length E2–GST ELISA with ELISPOT and proliferation assays using E2 C-terminal protein. As positive controls, HPV-16 L1 responses were measured using virus-like particles (VLPs) and L1–GST ELISA with ELISPOT and proliferation using VLPs as antigen. The VIN patients all showed a strong serological response to L1 compared with the healthy volunteers by VLP (15/18 vs 1/17, <0·001) and L1–GST ELISA (18/18 vs 1/17, <0·001). In contrast, L1-specific cellular immune responses were detected in a significant proportion of controls but were more prevalent in the VIN patients by proliferation assay (9/17 vs 17/18, <0·02) and interferon- ELISPOT (9/17 vs 13/18, =not significant). Similar and low numbers of patients and controls were seropositive for E2-specific Ig (2/18 vs 1/17). In spite of previous studies showing the immunogenicity of E2 in eliciting primary T-cell responses , there was a low prevalence of E2 responses in the VIN patients and controls (2/18 vs 0/17).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19095-0
2003-08-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842089.html?itemId=/content/journal/jgv/10.1099/vir.0.19095-0&mimeType=html&fmt=ahah

References

  1. Bauer H. M., Greer C. E., Manos M. M.. 1992; Determination of genital human papillomavirus infection by consensus PCR amplification. In Diagnostic Molecular Pathology: a Practical Approach vol II pp 131–152 Edited by Herrington C. S., McGee J. O. D.. Oxford: Oxford University Press;
    [Google Scholar]
  2. Bontkes H. J., de Gruijl T. D., Bijl A.. 7 other authors 1999; Human papillomavirus type 16 E2-specific T-helper lymphocyte responses in patients with cervical intraepithelial neoplasia. J Gen Virol80:2453–2459
    [Google Scholar]
  3. Borysiewicz L. K., Fiander A., Nimako M.. 10 other authors 1996; A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet347:1523–1527
    [Google Scholar]
  4. Carter J. J., Koutsky L. A., Wipf G. C., Christensen N. D., Lee S. K., Kuypers J., Kiviat N., Galloway D. A.. 1996; The natural history of human papillomavirus type 16 capsid antibodies among a cohort of university women. J Infect Dis174:927–936
    [Google Scholar]
  5. Davidson E. J., Brown M. D., Burt D. J., Parish J. L., Gaston K., Kitchener H. C., Stacey S. N., Stern P. L.. 2001; Human T cell responses to HPV-16 E2 generated with monocyte-derived dendritic cells. Int J Cancer94:807–812
    [Google Scholar]
  6. de Jong A., van der Burg S. H., Kwappenberg K. M.. 9 other authors 2002; Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res62:472–479
    [Google Scholar]
  7. De Roda Husman A. M., Walboomers J. M. M., van den Brule A. J. C., Meijer C. J. L. M., Snijders P. J. F.. 1995; The use of general primers Gp5 and Gp6 elongated at their 3′ ends with adjacent highly conserved sequences improves papillomavirus detection by PCR. J Gen Virol76:1057–1062
    [Google Scholar]
  8. Dillner J., Lenner P., Lehtinen M., Eklund C., Heino P., Wiklund F., Hallmans G., Stendahl U.. 1994; A population-based seroepidemiological study of cervical cancer. Cancer Res54:134–141
    [Google Scholar]
  9. Graham D. A., Herrington C. S.. 2000; HPV-16 E2 gene disruption and sequence variation in CIN 3 lesions and invasive squamous cell carcinomas of the cervix: relation to numerical chromosome abnormalities. Mol Pathol53:201–206
    [Google Scholar]
  10. Hamsikova E., Novak J., Hofmannova V., Munoz N., Bosch F. X., de Sanjose S., Shah K., Roth Z., Vonka V.. 1994; Presence of antibodies to seven human papillomavirus type 16-derived peptides in cervical cancer patients and healthy controls. J Infect Dis170:1424–1431
    [Google Scholar]
  11. Han R., Cladel N. M., Reed C. A., Peng X., Budgeon L. R., Pickel M., Christensen N. D.. 2000a; DNA vaccination prevents and/or delays carcinoma development of papillomavirus-induced skin papillomas on rabbits. J Virol74:9712–9716
    [Google Scholar]
  12. Han R., Reed C. A., Cladel N. M., Christensen N. D.. 2000b; Immunization of rabbits with cottontail rabbit papillomavirus E1 and E2 genes: protective immunity induced by gene gun-mediated intracutaneous delivery but not by intramuscular injection. Vaccine18:2937–2944
    [Google Scholar]
  13. Heino P., Dillner J., Schwartz S.. 1995; Human papillomavirus type-16 capsid proteins produced from recombinant Semliki Forest virus assemble into virus-like particles. Virology214:349–359
    [Google Scholar]
  14. Herod J. J. O., Shafi M. I., Rollason T. P., Jordan J. A., Luesley D. M.. 1996; Vulvar intraepithelial neoplasia: long term follow up of treated and untreated women. Br J Obstet Gynaecol103:446–452
    [Google Scholar]
  15. Hildesheim A., Han C. L., Brinton L. A., Kurman R. J., Schiller J. T.. 1997; Human papillomavirus type 16 and risk of preinvasive and invasive vulvar cancer: results from a seroepidemiological case–control study. Obstet Gynecol90:748–754
    [Google Scholar]
  16. Ho G. Y., Bierman R., Beardsley L., Chang C. J., Burk R. D.. 1998; Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med338:423–428
    [Google Scholar]
  17. Kirnbauer R., Taub J., Greenstone H., Roden R., Durst M., Gissmann L., Lowy D. R., Schiller J. T.. 1993; Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J Virol67:6929–6936
    [Google Scholar]
  18. Klencke B., Matijevic M., Urban R. G.. 10 other authors 2002; Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a phase I study of ZYC101. Clin Cancer Res8:1028–1037
    [Google Scholar]
  19. Lehtinen M., Leminen A., Kuoppala T., Tiikkainen M., Lehtinen T., Lehtovirta P., Punnonen R., Vesterinen E., Paavonen J.. 1992; Pre- and post-treatment serum antibody responses to HPV-16 E2 and HSV 2 ICP8 proteins in women with cervical carcinoma. J Med Virol37:180–186
    [Google Scholar]
  20. Lenner P., Dillner J., Wiklund F., Hallmans G., Stendahl U.. 1995; Serum antibody responses against human papillomavirus in relation to tumor characteristics, response to treatment, and survival in carcinoma of the uterine cervix. Cancer Immunol Immunother40:201–205
    [Google Scholar]
  21. Lenz P., Day P. M., Pang Y. Y., Frye S. A., Jensen P. N., Lowy D. R., Schiller J. T.. 2001; Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol166:5346–5355
    [Google Scholar]
  22. Muderspach L., Wilczynski S., Roman L.. & 7 other authors 2000; A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV-16 positive. Clin Cancer Res6:3406–3416
    [Google Scholar]
  23. Peitsaro P., Johansson B., Syrjanen S.. 2002; Integrated human papillomavirus type 16 is frequently found in cervical cancer precursors as demonstrated by a novel quantitative real-time PCR technique. J Clin Microbiol40:886–891
    [Google Scholar]
  24. Rocha-Zavaleta L., Jordan D., Pepper S.. 7 other authors 1997; Differences in serological IgA responses to recombinant baculovirus-derived human papillomavirus E2 protein in the natural history of cervical neoplasia. Brit J Cancer75:1144–1150
    [Google Scholar]
  25. Rozendaal L., Walboomers J. M. M., Van der Linden J. C.. 1996; High risk human papillomavirus in cytomorphological normal smears has a high predictive value for development of severe dysplasia. Int J Cancer68:766–769
    [Google Scholar]
  26. Rudolf M. P., Fausch S. C., Da Silva D. M., Kast W. M.. 2001; Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol166:5917–5924
    [Google Scholar]
  27. Sallusto F., Lenig D., Forster R., Lipp M., Lanzavecchia A.. 1999; Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature401:708–712
    [Google Scholar]
  28. Santin A. D., Bellone S., Gokden M., Cannon M. J., Parham G. P.. 2002; Vaccination with HPV-18 E7-pulsed dendritic cells in a patient with metastatic cervical cancer. N Engl J Med346:1752–1753
    [Google Scholar]
  29. Schiller J. T., Hildesheim A.. 2000; Developing HPV virus-like particle vaccines to prevent cervical cancer: a progress report. J Clin Virol19:67–74
    [Google Scholar]
  30. Sehr P., Zumbach K., Pawlita M.. 2001; A generic capture ELISA for recombinant proteins fused to glutathione S -transferase: validation for HPV serology. J Immunol Methods253:153–162
    [Google Scholar]
  31. Sehr P., Muller M., Hopfl R., Widschwendter A., Pawlita M.. 2002; HPV- antibody detection by ELISA with capsid protein L1 fused to glutathione S-transferase. J Virol Methods106:61–70
    [Google Scholar]
  32. Shah K. V., Viscidi R. P., Alberg A. J., Helzlsouer K. J., Comstock G. W.. 1997; Antibodies to human papillomavirus 16 and subsequent in situ or invasive cancer of the cervix. Cancer Epidemiol Biomark Prev6:233–237
    [Google Scholar]
  33. Soler C., Allibert P., Chardonnet Y., Cros P., Mandrand B., Thivolet J.. 1991; Detection of human papillomavirus types 6, 11, 16 and 18 in mucosal and cutaneous lesions by the multiplex polymerase chain reaction. J Virol Methods35:143–157
    [Google Scholar]
  34. Steele J. C., Roberts S., Rookes S. M., Gallimore P. H.. 2002; Detection of CD4+- and CD8+-T-cell responses to human papillomavirus type 1 antigens expressed at various stages of the virus life cycle by using an enzyme-linked immunospot assay of gamma interferon release. J Virol76:6027–6036
    [Google Scholar]
  35. Stevenson M., Hudson L. C., Burns J. E., Stewart R. L., Wells M., Maitland N. J.. 2000; Inverse relationship between the expression of the human papillomavirus type 16 transcription factor E2 and virus DNA copy number during the progression of cervical intraepithelial neoplasia. J Gen Virol81:1825–1832
    [Google Scholar]
  36. Sun Y., Hildesheim A., Brinton L. A., Nasca P. C., Trimble C. L., Kurman R. J., Viscidi R. P., Shah K. V.. 1996; Human papillomavirus-specific serologic response in vulvar neoplasia. Gynecol Oncol63:200–203
    [Google Scholar]
  37. Tindle R. W.. 2002; Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer2:59–65
    [Google Scholar]
  38. Tonon S. A., Picconi M. A., Bos P. D., Zinovich J. B., Galuppo J., Alonio L. V., Teyssie A. R.. 2001; Physical status of the E2 human papillomavirus 16 viral gene in cervical preneoplastic and neoplastic lesions. J Clin Virol21:129–134
    [Google Scholar]
  39. van Beurden M., ten Kate F. J., Smits H. L., Berkhout R. J., de Craen A. J., van der Vange N., Lammes F. B., ter Schegget J.. 1995; Multifocal vulvar intraepithelial neoplasia grade III and multicentric lower genital tract neoplasia is associated with transcriptionally active human papillomavirus. Cancer75:2879–2884
    [Google Scholar]
  40. van der Burg S. H., Ressing M. E., Kwappenberg K. M. C.. 11 other authors 2001; Natural T-helper immunity against human papillomavirus type 16 (HPV-16) E7-derived peptide epitopes in patients with HPV-16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int J Cancer91:612–618
    [Google Scholar]
  41. Wang Z., Christensen N., Schiller J. T., Dillner J.. 1997; A monoclonal antibody against intact human papillomavirus type 16 capsids blocks the serological reactivity of most human sera. J Gen Virol78:2209–2215
    [Google Scholar]
  42. Webster K., Parish J., Pandya M., Stern P. L., Clarke A. R., Gaston K.. 2000; The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem275:87–94
    [Google Scholar]
  43. Wikstrom A., Vandoornum G. J. J., Quint W. G. V., Schiller J. T., Dillner J.. 1995; Identification of human papillomavirus seroconversions. J Gen Virol76:529–539
    [Google Scholar]
  44. Williams O. M., Hart K. W., Wang E. C., Gelder C. M.. 2002; Analysis of CD4+ T-cell responses to human papillomavirus (HPV) type 11 L1 in healthy adults reveals a high degree of responsiveness and cross-reactivity with other HPV types. J Virol76:7418–7429
    [Google Scholar]
  45. Zhou J., Sun X. Y., Davies H., Crawford L., Park D., Frazer I. H.. 1992; Definition of linear antigenic regions of the HPV-16 L1 capsid protein using synthetic virion-like particles. Virology189:592–599
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19095-0
Loading
/content/journal/jgv/10.1099/vir.0.19095-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error