1887

Abstract

The vaccine or Vero cell-adapted strains of measles virus (MV) have been reported to use CD46 as a cell entry receptor, while lymphotropic MVs preferentially use the signalling lymphocyte activation molecule (SLAM or CD150). In contrast to the virus obtained from patients with acute measles, little is known about the receptor that is used by defective variants of MV isolated from patients with subacute sclerosing panencephalitis (SSPE). The receptor-binding properties of SSPE strains of MV were analysed using vesicular stomatitis virus pseudotypes expressing the envelope glycoproteins of SSPE strains of MV. Such pseudotype viruses could use SLAM but not CD46 for entry. The pseudotype viruses with SSPE envelope glycoproteins could enter Vero cells, which do not express SLAM. In addition, their entry was not blocked by the monoclonal antibody to CD46, pointing to another entry receptor for SSPE strains on Vero cells. Furthermore, the unknown receptor(s), distinct from SLAM and CD46, may be present on cell lines derived from lymphoid and neural cells. Biochemical characterization of the receptor present on Vero cells and SK-N-SH neuroblastoma cells was consistent with a glycoprotein. Identification of additional entry receptors for MV will provide new insights into the mechanism of spread of MV in the central nervous system and possible reasons for differences between MVs isolated from patients with acute measles and SSPE.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19091-0
2003-08-01
2024-11-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842133.html?itemId=/content/journal/jgv/10.1099/vir.0.19091-0&mimeType=html&fmt=ahah

References

  1. Ayata M., Kimoto T., Hayashi K., Seto T., Murata R., Ogura H. 1998; Nucleotide sequences of the matrix protein gene of subacute sclerosing panencephalitis viruses compared with local contemporary isolates from patients with acute measles. Virus Res 54:107–115
    [Google Scholar]
  2. Baczko K., Liebert U. G., Billeter M., Cattaneo R., Budka H., ter Meulen V. 1986; Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J Virol 59:472–478
    [Google Scholar]
  3. Buchholz C. J., Gerlier D., Hu A., Cathomen T., Liszewski M. K., Atkinson J. P., Cattaneo R. 1996; Selective expression of a subset of measles virus receptor-competent CD46 isoforms in human brain. Virology 217:349–355
    [Google Scholar]
  4. Burnstein T., Jacobsen L. B., Zeman W., Chen T. T. 1974; Persistent infection of BSC-1 cells by defective measles virus derived from subacute sclerosing panencephalitis. Infect Immun 10:1378–1382
    [Google Scholar]
  5. Cattaneo R., Rebmann G., Schmid A., Baczko K., ter Meulen V., Billeter M. A. 1987; Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6:681–688
    [Google Scholar]
  6. Cocks B. G., Chang C. C., Carballido J. M., Yssel H., de Vries J. E., Aversa G. 1995; A novel receptor involved in T-cell activation. Nature 376:260–263
    [Google Scholar]
  7. Doi Y., Sanpe T., Nakajima M., Okawa S., Koto T. 1972; Properties of a cytopathic agent isolated from a patient with subacute sclerosing panencephalitis in Japan. Jpn J Med Sci Biol 25:321–333
    [Google Scholar]
  8. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305
    [Google Scholar]
  9. Duprex W. P., McQuaid S., Roscic-Mrkic B., Cattaneo R., McCallister C., Rima B. K. 2000; In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol 74:7972–7979
    [Google Scholar]
  10. Ehrengruber M. U., Ehler E., Billeter M., Naim H. Y. 2002; Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J Virol 76:5720–5728
    [Google Scholar]
  11. Erlenhoefer C., Wurzer W. J., Loffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505
    [Google Scholar]
  12. Firsching R., Buchholz C. J., Schneider U., Cattaneo R., ter Meulen V., Schneider-Schaulies J. 1999; Measles virus spread by cell–cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. J Virol 73:5265–5273
    [Google Scholar]
  13. Furukawa K., Ayata M., Kimura M., Seto T., Matsunaga I., Murata R., Yamano T., Ogura H. 2001; Hemadsorption expressed by cloned H genes from subacute sclerosing panencephalitis (SSPE) viruses and their possible progenitor measles viruses isolated in Osaka, Japan. Microbiol Immunol 45:59–68
    [Google Scholar]
  14. Hahm B., Arbour N., Naniche D., Homann D., Manchester M., Oldstone M. B. A. 2003; Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 77:3505–3515
    [Google Scholar]
  15. Hashimoto K., Ono N., Tatsuo H., Minagawa H., Takeda M., Takeuchi K., Yanagi Y. 2002; SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76:6743–6749
    [Google Scholar]
  16. Homma M., Tashiro M., Konno H., Ohara Y., Hino M., Takase S. 1982; Isolation and characterization of subacute sclerosing panencephalitis virus (Yamagata-1 strain) from a brain autopsy. Microbiol Immunol 26:1195–1202
    [Google Scholar]
  17. Hsu E. C., Dörig R. E., Sarangi F., Marcil A., Iorio C., Richardson C. D. 1997; Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding. J Virol 71:6144–6154
    [Google Scholar]
  18. Hsu E. C., Iorio C., Sarangi F., Khine A. A., Richardson C. D. 2001; CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21
    [Google Scholar]
  19. Ito N., Ayata M., Shingai M., Furukawa K., Seto T., Matsunaga I., Muraoka M., Ogura H. 2002; Comparison of the neuropathogenicity of two SSPE sibling viruses of the Osaka-2 strain isolated with Vero and B95a cells. J Neurovirol 8:6–13
    [Google Scholar]
  20. Karp C. L. 1999; Measles: immunosuppression, interleukin-12, and complement receptors. Immunol Rev 168:91–101
    [Google Scholar]
  21. Klagge I. M., ter Meulen V., Schneider-Schaulies S. 2000; Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 30:2741–2750
    [Google Scholar]
  22. Kobune F., Sakata H., Sugiura A. 1990; Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64:700–705
    [Google Scholar]
  23. Kouomou D. W., Wild T. F. 2002; Adaptation of wild-type measles virus to tissue culture. J Virol 76:1505–1509
    [Google Scholar]
  24. Kratzsch V., Hall W. W., Nagashima K., ter Meulen V. 1977; Biological and biochemical characterization of a latent subacute sclerosing panencephalitis (SSPE) virus infection in tissue culture. J Med Virol 1:139–154
    [Google Scholar]
  25. Lawrence D. M. P., Patterson C. E., Gales T. L., D’Orazio J. L., Vaughn M. M., Rall G. F. 2000; Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74:1908–1918
    [Google Scholar]
  26. Li L., Qi Y. 2002; A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch Virol 147:775–786
    [Google Scholar]
  27. Liebert U. G., Baczko K., Budka H., ter Meulen V. 1986; Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Gen Virol 67:2435–2444
    [Google Scholar]
  28. Makino S., Sasaki K., Nakagawa M., Saito M., Shinohara Y. 1977; Isolation and biological characterization of a measles virus-like agent from the brain of an autopsied case of subacute sclerosing panencephalitis (SSPE. Microbiol Immunol 21:193–205
    [Google Scholar]
  29. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Munoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74:3967–3974
    [Google Scholar]
  30. Massé N., Barrett T., Muller C. P., Wild T. F., Buckland R. 2002; Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. J Virol 76:13034–13038
    [Google Scholar]
  31. McQuaid S., Cosby S. L. 2002; An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82:403–409
    [Google Scholar]
  32. Minagawa H., Tanaka K., Ono N., Tatsuo H., Yanagi Y. 2001; Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82:2913–2917
    [Google Scholar]
  33. Mrkic B., Pavlovic J., Rulicke T., Volpe P., Buchholz C. J., Hourcade D., Atkinson J. P., Aguzzi A., Cattaneo R. 1998; Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427
    [Google Scholar]
  34. Murabayashi N., Kurita-Taniguchi M., Ayata M., Matsumoto M., Ogura H., Seya T. 2002; Susceptibility of human dendritic cells (DCs) to measles virus (MV) depends on their activation stages in conjunction with the level of CDw150: role of Toll stimulators in DC maturation and MV amplification. Microbes Infect 4:785–794
    [Google Scholar]
  35. Murakami Y., Seya T., Kurita M., Fukui A., Ueda S., Nagasawa S. 1998; Molecular cloning of membrane cofactor protein (MCP; CD46) on B95a cell, an Epstein–Barr virus-transformed marmoset B cell line: B95a-MCP is susceptible to infection by the CAM, but not the Nagahata strain of the measles virus. Biochem J 330:1351–1359
    [Google Scholar]
  36. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  37. Nielsen L., Blixenkrone-Moller M., Thylstrup M., Hansen N. J., Bolt G. 2001; Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146:197–208
    [Google Scholar]
  38. Ning X., Ayata M., Kimura M. 8 other authors 2002; Alterations and diversity in the cytoplasmic tail of the fusion protein of subacute sclerosing panencephalitis virus strains isolated in Osaka, Japan. Virus Res 86:123–131
    [Google Scholar]
  39. Ogata A., Czub S., Ogata S., Cosby S. L., McQuaid S., Budka H., ter Meulen V., Schneider-Schaulies J. 1997; Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathol 94:444–449
    [Google Scholar]
  40. Ogura H., Ayata M., Hayashi K., Seto T., Matsuoka O., Hattori H., Tanaka K., Takano Y., Murata R. 1997; Efficient isolation of subacute sclerosing panencephalitis virus from patient brains by reference to magnetic resonance and computed tomographic images. J Neurovirol 3:304–309
    [Google Scholar]
  41. Ohgimoto S., Ohgimoto K., Niewiesk S. 7 other authors 2001; The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro . J Gen Virol 82:1835–1844
    [Google Scholar]
  42. Oldstone M., Lewicki H., Thomas D. 7 other authors 1999; Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98:629–640
    [Google Scholar]
  43. Ono N., Tatsuo H., Hidaka Y., Aoki T., Minagawa H., Yanagi Y. 2001; Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401
    [Google Scholar]
  44. Richardson C. D., Scheid A., Choppin P. W. 1980; Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology 105:205–222
    [Google Scholar]
  45. Schlegel R., Tralka T. S., Willingham M. C., Pastan I. 1983; Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site?. Cell 32:639–646
    [Google Scholar]
  46. Schlender J., Schnorr J. J., Spielhoffer P., Cathomen T., Cattaneo R., Billeter M. A., ter Meulen V., Schneider-Schaulies S. 1996; Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro . Proc Natl Acad Sci U S A 93:13194–13199
    [Google Scholar]
  47. Schneider-Schaulies J., ter Meulen V., Schneider-Schaulies S. 2001; Measles virus interactions with cellular receptors: consequences for viral pathogenesis. J Neurovirol 7:391–399
    [Google Scholar]
  48. Seya T., Kurita M., Hara T. 7 other authors 1995; Blocking measles virus infection with a recombinant soluble form of, or monoclonal antibodies against, membrane cofactor protein of complement (CD46). Immunology 84:619–625
    [Google Scholar]
  49. Shibahara K., Hotta H., Katayama Y., Homma M. 1994; Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J Gen Virol 75:3511–3516
    [Google Scholar]
  50. Sidhu M. S., Crowley J., Lowenthal A., Karcher D., Menonna J., Cook S., Udem S., Dowling P. 1994; Defective measles virus in human subacute sclerosing panencephalitis brain. Virology 202:631–641
    [Google Scholar]
  51. Sidorenko S. P., Clark E. A. 1993; Characterization of a cell surface glycoprotein IPO-3, expressed on activated human B and T lymphocytes. J Immunol 151:4614–4624
    [Google Scholar]
  52. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769
    [Google Scholar]
  53. Takeda M., Kato A., Kobune F., Sakata H., Li Y., Shioda T., Sakai Y., Asakawa M., Nagai Y. 1998; Measles virus attenuation associated with transcriptional impediment and a few amino acid changes in the polymerase and accessory proteins. J Virol 72:8690–8696
    [Google Scholar]
  54. Tatsuo H., Okuma K., Tanaka K., Ono N., Minagawa H., Takade A., Matsuura Y., Yanagi Y. 2000a; Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74:4139–4145
    [Google Scholar]
  55. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000b; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897
    [Google Scholar]
  56. Toyoshima K., Takahashi M., Hata S., Kunita N., Okuno Y. 1959; Virological studies on measles virus. I. Isolation of measles virus using FL cells and immunological properties of the isolated agents. Biken J 2:305–312
    [Google Scholar]
  57. Ueda S., Okuno Y., Hamamoto Y., Oya H. 1975; Subacute sclerosing panencephalitis (SSPE): isolation of a defective variant of measles virus from brain obtained at autopsy. Biken J 18:113–122
    [Google Scholar]
  58. Wong T. C., Ayata M., Ueda S., Hirano A. 1991; Role of biased hypermutation in evolution of subacute sclerosing panencephalitits virus from progenitor acute measles virus. J Virol 65:2191–2199
    [Google Scholar]
  59. Yanagi Y. 2001; The cellular receptor for measles virus: elusive no more. Rev Med Virol 11:149–156
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.19091-0
Loading
/content/journal/jgv/10.1099/vir.0.19091-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error