1887

Abstract

The U3 region of the human endogenous retrovirus W long terminal repeat (HERV-W LTR) contains several putative regulatory sequences that might not only regulate transcription of viral genes but also influence the expression of neighbouring cellular genes. In this study, we analysed the U3 region in detail in order to understand the transcriptional regulatory mechanism of HERV-W. Two transcription factor (TF) binding sites for Oct-1 and C/EBP were important as a silencer and an enhancer, respectively, for transcriptional regulation. Furthermore, it was possible to divide the HERV-W LTR isolates into two groups depending on their promoter strength, which might be determined by the integrity of the two TF binding sites. However, neither the Oct-1 binding site nor the CAAT-box was required for the cell type-specific activity of the HERV-W LTR. Instead, the 3′ terminus of U3 from 191 to 260, which includes a TATA box, was sufficient for specificity, suggesting that the efficiency of assembly of basic transcription machinery at the TATA box of HERV-W LTR might determine the cell type specificity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19076-0
2003-08-01
2020-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842229.html?itemId=/content/journal/jgv/10.1099/vir.0.19076-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Blond J.-L., Besème F., Duret L., Bouton O., Bedin F., Perron H., Mandrand B., Mallet F.. 1999; Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol73:1175–1185
    [Google Scholar]
  3. Boller K., Konig H., Sauter M., Mueller-Lantzsch N., Lower R., Lower J., Kurth R.. 1993; Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology196:349–353
    [Google Scholar]
  4. Christy R. J., Huang R. C.. 1988; Functional analysis of the long terminal repeats of intracisternal A-particle genes: sequences within the U3 region determine both the efficiency and direction of promoter activity. Mol Cell Biol8:1093–1102
    [Google Scholar]
  5. Di Cristofano A., Strazullo M., Longo L., La Mantia G.. 1995; Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family. Nucleic Acids Res23:2823–2830
    [Google Scholar]
  6. Domansky A. N., Kopantzev E. P., Snezhkov E. V., Lebedev Y. B., Leib-Mösch C., Sverdlov E. D.. 2000; Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett472:191–195
    [Google Scholar]
  7. Douville P., Hagmann M., Georgiev O., Schaffner W.. 1995; Positive and negative regulation at the herpes simplex virus ICP4 and ICP0 TAATGARAT motifs. Virology207:107–116
    [Google Scholar]
  8. Feuchter A., Mager D.. 1990; Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Res18:1261–1270
    [Google Scholar]
  9. Gorman C. M., Merlino G. T., Willingham M. C., Pastan I., Howard B. H.. 1982; The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A79:6777–6781
    [Google Scholar]
  10. Jurka J.. 1998; Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol8:333–337
    [Google Scholar]
  11. Knössl M., Löwer R., Löwer J.. 1999; Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J Virol73:1254–1261
    [Google Scholar]
  12. Komurian-Pradel F., Paranhos-Baccala G., Bedin F.. 8 other authors 1999; Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology260:1–9
    [Google Scholar]
  13. Kwun H. J., Han H. J., Lee W. J., Kim H. S., Jang K. L.. 2002; Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res86:93–100
    [Google Scholar]
  14. Leib-Mösch C., Seifarth W.. 1996; Evolution and biological significance of human retroelements. Virus Genes11:133–145
    [Google Scholar]
  15. Löwer R., Löwer J., Kurth R.. 1996; The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci U S A93:5177–5184
    [Google Scholar]
  16. Lyden T. W., Johnson P. M., Mwenda J. M., Rote N. S.. 1994; Ultrastructural characterization of endogenous retroviral particles isolated from normal human placentas. Biol Reprod51:152–157
    [Google Scholar]
  17. Mi S., Lee X., Li X.. 9 other authors 2000; Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature403:785–789
    [Google Scholar]
  18. Okumura K., Sakaguchi G., Takagi S., Naito K., Mimori T., Igarashi H.. 1996; Sp1 family proteins recognize the U5 repressive element of the long terminal repeat of human T cell leukemia virus type I through binding to the CACCC core motif. J Biol Chem271:12944–12950
    [Google Scholar]
  19. O'Reilly R. L., Singh S. M.. 1996; Retroviruses and schizophrenia revisited. Am J Med Genet67:19–24
    [Google Scholar]
  20. Patience C., Wilkinson D. A., Weiss R. A.. 1997; Our retroviral heritage. Trends Genet13:116–120
    [Google Scholar]
  21. Peeters A., Lambert P. F., Deacon N. J.. 1996; A fourth Sp1 site in the human immunodeficiency virus type 1 long terminal repeat is essential for negative-sense transcription. J Virol70:6665–6672
    [Google Scholar]
  22. Schön U., Seifarth W., Baust C., Hohenadl C., Erfle V., Leib-Mösch C.. 2001; Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology278:280–291
    [Google Scholar]
  23. Seifarth W., Skladny H., Krieg-Schneider F., Reichert A., Hehlmann R., Leib-Mosch C.. 1995; Retrovirus-like particles released from the human breast cancer cell line T47-D display type B- and C-related endogenous retroviral sequences. J Virol69:6408–6416
    [Google Scholar]
  24. Sverdlov E. D.. 1998; Perpetually mobile footprints of ancient infections in human genome. FEBS Lett428:1–6
    [Google Scholar]
  25. Wilkinson D. A., Mager D. L., Leong J. C.. 1994; Endogenous retroviruses. In The Retroviridae vol. 3 pp 465–535 Edited by Levy J. A.. New York: Plenum;
    [Google Scholar]
  26. Yang P., Zemba M., Aboud M., Flugel R. M., Lochelt M.. 1997; Deletion analysis of both the long terminal repeat and the internal promoters of the human foamy virus. Virus Genes15:17–23
    [Google Scholar]
  27. York D. F., Vigne R., Verwoerd D. W., Querat G.. 1992; Nucleotide sequence of the jaagsiekte retrovirus, an exogenous and endogenous type D and B retrovirus of sheep and goats. J Virol66:4930–4939
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19076-0
Loading
/content/journal/jgv/10.1099/vir.0.19076-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error