1887

Abstract

Hepatitis C virus (HCV) is an important human pathogen that affects 170 million people worldwide. The HCV genome is approximately 9·6 kb in length and encodes a polyprotein that is proteolytically cleaved to generate at least 10 mature viral protein products. Recently, a new protein, named F, has been described to be expressed through a ribosomal frameshift within the capsid-encoding sequence, a mechanism unique among members of the family . Here, expression of the F protein was investigated in an transcription/translation assay. Its expression in mammalian cells was confirmed using specific recombinant vaccinia viruses; under these conditions, protein expression is dependent on the HCV IRES. The F protein was tagged with firefly luciferase or the Myc epitope to facilitate its identification. Ribosomal frameshifting was dependent on the presence of mutations in the capsid-encoding sequence. No frameshifting was detected in the absence of any mutation. Furthermore, analysis of the F protein in time-course experiments revealed that the protein is very unstable and that its production can be stabilized by the proteasome inhibitor MG132. Finally, indirect immunofluorescence studies have localized the F protein in the cytoplasm, with notable perinuclear detection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19065-0
2003-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/7/vir841751.html?itemId=/content/journal/jgv/10.1099/vir.0.19065-0&mimeType=html&fmt=ahah

References

  1. Belcourt, M. F. & Farabaugh, P. J. ( 1990; ). Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62, 339–352.[CrossRef]
    [Google Scholar]
  2. Brierley, I. ( 1995; ). Ribosomal frameshifting viral RNAs. J Gen Virol 76, 1885–1892.[CrossRef]
    [Google Scholar]
  3. Chamorro, M., Parkin, N. & Varmus, H. E. ( 1992; ). An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci U S A 89, 713–717.[CrossRef]
    [Google Scholar]
  4. Choo, Q.-L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. & Houghton, M. ( 1989; ). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362.[CrossRef]
    [Google Scholar]
  5. Choo, Q.-L., Richman, K. H., Han, J. H. & 11 other authors ( 1991; ). Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A 88, 2451–2455.[CrossRef]
    [Google Scholar]
  6. Dinman, J. D. ( 1995; ). Ribosomal frameshifting in yeast viruses. Yeast 11, 1115–1127.[CrossRef]
    [Google Scholar]
  7. Dubuisson, J. & Rice, C. M. ( 1996; ). Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 70, 778–786.
    [Google Scholar]
  8. Feinstone, S. M., Alter, H. J., Dienes, H. P., Shimizu, Y., Popper, H., Blackmore, D., Sly, D., London, W. T. & Purcell, R. H. ( 1981; ). Non-A, non-B hepatitis in chimpanzees and marmosets. J Infect Dis 144, 588–598.[CrossRef]
    [Google Scholar]
  9. Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J. & Schreiber, S. L. ( 1995; ). Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731.[CrossRef]
    [Google Scholar]
  10. Fournillier-Jacob, A., Cahour, A., Escriou, N., Girard, M. & Wychowski, C. ( 1996; ). Processing of the E1 glycoprotein of hepatitis C virus expressed in mammalian cells. J Gen Virol 77, 1055–1064.[CrossRef]
    [Google Scholar]
  11. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. ( 1986; ). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 8122–8126.[CrossRef]
    [Google Scholar]
  12. Gesteland, R. F. & Atkins, J. F. ( 1996; ). Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65, 741–768.[CrossRef]
    [Google Scholar]
  13. Herold, J. & Siddell, S. G. ( 1993; ). An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21, 5838–5842.[CrossRef]
    [Google Scholar]
  14. Hussy, P., Langen, H., Mous, J. & Jacobsen, H. ( 1996; ). Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224, 93–104.[CrossRef]
    [Google Scholar]
  15. Ivanov, I. P., Matsufuji, S., Murakami, Y., Gesteland, R. F. & Atkins, J. F. ( 2000; ). Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 19, 1907–1917.[CrossRef]
    [Google Scholar]
  16. Jacks, T., Madhani, H. D., Masiarz, F. R. & Varmus, H. E. ( 1988; ). Signals for ribosomal frameshifting in the Rous sarcoma virus gag–pol region. Cell 55, 447–458.[CrossRef]
    [Google Scholar]
  17. Kieny, M.-P., Lathe, R., Drillien, R., Spehner, D., Skory, S., Schmitt, D., Wiktor, T., Koprowski, H. & Lecocq, J.-P. ( 1984; ). Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 312, 163–166.[CrossRef]
    [Google Scholar]
  18. Lee, D. H. & Goldberg, A. L. ( 1998; ). Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8, 397–403.[CrossRef]
    [Google Scholar]
  19. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 991–1042. Edited by D. M. Knipe & P. M. Howley. Philadelphia: Lippincott Williams & Wilkins.
  20. Liu, Q., Tackney, C., Bhat, R. A., Prince, A. M. & Zhang, P. ( 1997; ). Regulated processing of hepatitis C virus core protein is linked to subcellular localization. J Virol 71, 657–662.
    [Google Scholar]
  21. Lo, S. Y., Selby, M., Tong, M. & Ou, J. H. ( 1994; ). Comparative studies of the core gene products of two different hepatitis C virus isolates: two alternative forms determined by a single amino acid substitution. Virology 199, 124–131.[CrossRef]
    [Google Scholar]
  22. Lo, S. Y., Masiarz, F., Hwang, S. B., Lai, M. M. & Ou, J. H. ( 1995; ). Differential subcellular localization of hepatitis C virus core gene products. Virology 213, 455–461.[CrossRef]
    [Google Scholar]
  23. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  24. Maillard, P., Krawczynski, K., Nitkiewicz, J. & 7 other authors ( 2001; ). Nonenveloped nucleocapsids of hepatitis C virus in the serum of infected patients. J Virol 75, 8240–8250.[CrossRef]
    [Google Scholar]
  25. Marczinke, B., Bloys, A. J., Brown, T. D., Willcocks, M. M., Carter, M. J. & Brierley, I. ( 1994; ). The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting. J Virol 68, 5588–5595.
    [Google Scholar]
  26. McHutchison, J. G. & Poynard, T. ( 1999; ). Combination therapy with interferon plus ribavirin for the initial treatment of chronic hepatitis C. Semin Liver Dis 19, 57–65.
    [Google Scholar]
  27. McHutchison, J. G., Gordon, S. C., Schiff, E. R. & 7 other authors ( 1998; ). Interferon α2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N Engl J Med 339, 1485–1492.[CrossRef]
    [Google Scholar]
  28. McLauchlan, J. ( 2000; ). Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hep 7, 2–14.[CrossRef]
    [Google Scholar]
  29. McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. ( 2002; ). Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J 21, 3980–3988.[CrossRef]
    [Google Scholar]
  30. Meunier, J. C., Fournillier, A., Choukhi, A., Cahour, A., Cocquerel, L., Dubuisson, J. & Wychowski, C. ( 1999; ). Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex. J Gen Virol 80, 887–896.
    [Google Scholar]
  31. Miller, R. H. & Purcell, R. H. ( 1990; ). Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc Natl Acad Sci U S A 87, 2057–2061.[CrossRef]
    [Google Scholar]
  32. Molinari, E., Gilman, M. & Natesan, S. ( 1999; ). Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J 18, 6439–6447.[CrossRef]
    [Google Scholar]
  33. Naylor, L. H. ( 1999; ). Reporter gene technology: the future looks bright. Biochem Pharmacol 58, 749–757.[CrossRef]
    [Google Scholar]
  34. Parkin, N. T., Chamorro, M. & Varmus, H. E. ( 1992; ). Human immunodeficiency virus type 1 gag–pol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J Virol 66, 5147–5151.
    [Google Scholar]
  35. Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K. & Bartenschlager, R. ( 2001; ). Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 75, 1252–1264.[CrossRef]
    [Google Scholar]
  36. Reil, H., Kollmus, H., Weidle, U. H. & Hauser, H. ( 1993; ). A heptanucleotide sequence mediates ribosomal frameshifting in mammalian cells. J Virol 67, 5579–5584.
    [Google Scholar]
  37. Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Internal ribosome entry site-mediated translation in hepatitis C virus replication. Curr Top Microbiol Immunol 242, 85–116.
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Santolini, E., Migliaccio, G. & La Monica, N. ( 1994; ). Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68, 3631–3641.
    [Google Scholar]
  40. Schalm, S. W., Weiland, O., Hansen, B. E. & 9 other authors ( 1999; ). Interferon-ribavirin for chronic hepatitis C with and without cirrhosis: analysis of individual patient data of six controlled trials. Eurohep Study Group for Viral Hepatitis. Gastroenterology 117, 408–413.[CrossRef]
    [Google Scholar]
  41. Stemmer, W. P. C. & Morris, S. K. ( 1992; ). Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site directed mutagenesis. Biotechniques 13, 214–220.
    [Google Scholar]
  42. Takeuchi, K., Kubo, Y., Boonmar, S. & 7 other authors ( 1990; ). The putative nucleocapsid and envelope protein genes of hepatitis C virus determined by comparison of the nucleotide sequences of two isolates derived from an experimentally infected chimpanzee and healthy human carriers. J Gen Virol 71, 3027–3033.[CrossRef]
    [Google Scholar]
  43. ten Dam, E. B., Pleij, C. W. & Bosch, L. ( 1990; ). RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4, 121–136.[CrossRef]
    [Google Scholar]
  44. Varaklioti, A., Vassilaki, N., Georgopoulou, U. & Mavromara, P. ( 2002; ). Alternate translation occurs within the core coding region of the hepatitis C viral genome. J Biol Chem 277, 17713–17721.[CrossRef]
    [Google Scholar]
  45. Walewski, J. L., Keller, T. R., Stump, D. D. & Branch, A. D. ( 2001; ). Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7, 710–721.[CrossRef]
    [Google Scholar]
  46. Wilson, W., Braddock, M., Adams, S. E., Rathjen, P. D., Kingsman, S. M. & Kingsman, A. J. ( 1988; ). HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell 55, 1159–1169.[CrossRef]
    [Google Scholar]
  47. Xu, Z., Choi, J., Yen, T. S., Lu, W., Strohecker, A., Govindarajan, S., Chien, D., Selby, M. J. & Ou, J. ( 2001; ). Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J 20, 3840–3848.[CrossRef]
    [Google Scholar]
  48. Yasui, K., Wakita, T., Tsukiyama-Kohara, K., Funahashi, S. I., Ichikawa, M., Kajita, T., Moradpour, D., Wands, J. R. & Kohara, M. ( 1998; ). The native form and maturation process of hepatitis C virus core protein. J Virol 72, 6048–6055.
    [Google Scholar]
  49. Yeh, C. T., Lo, S. Y., Dai, D. I., Tang, J. H., Chu, C. M. & Liaw, Y. F. ( 2000; ). Amino acid substitutions in codons 9–11 of hepatitis C virus core protein lead to the synthesis of a short core protein product. J Gastroenterol Hepatol 15, 182–191.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19065-0
Loading
/content/journal/jgv/10.1099/vir.0.19065-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error