1887

Abstract

Chinese hamster ovary (CHO) cells manifesting striking cytopathogenic changes in culture were investigated to determine the causative agent. Electron microscopic analyses revealed viral particles of about 40 nm in diameter, displaying typical calicivirus morphology. To date, this virus, designated isolate 2117, exclusively replicates in CHO cells, achieving only moderate titres. After cloning, the coding region of 7928 nucleotides, the 3′ non-coding region and the poly(A) tail were sequenced. The genome consists of three open reading frames (ORFs), with the first and second ORF having the same reading frame. The overall genomic organization as well as the nucleotide sequence of isolate 2117 is most similar to that of a recently described canine calicivirus, but also shows significant similarity to the sequences of mink calicivirus and other caliciviruses within the genus . In Western blots, using antibodies against the viral protease, a stable, unprocessed 3CD protein of 68 kDa was identified in homogenates of 2117-infected CHO cells. Furthermore, antibodies raised against ORF 3 reacted with the respective protein in 2117-virions, demonstrating that this predicted 9 kDa protein is a minor structural component of the virion. In addition, an RT-PCR assay was established to detect 2117 viral RNA in biological products such as foetal bovine serum, which will aid the discovery of the origin and host of the virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19042-0
2003-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/10/vir842837.html?itemId=/content/journal/jgv/10.1099/vir.0.19042-0&mimeType=html&fmt=ahah

References

  1. Capucci, L., Fusi, P., Lavazza, A., Pacciarini, M. L. & Rossi, C. ( 1996; ). Detection and preliminary characterization of a new rabbit calicivirus related to rabbit hemorrhagic disease virus but nonpathogenic. J Virol 70, 8614–8623.
    [Google Scholar]
  2. Chomczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162, 156–159.
    [Google Scholar]
  3. Clarke, I. N. & Lambden, P. R. ( 1997a; ). The molecular biology of caliciviruses. J Gen Virol 78, 291–301.
    [Google Scholar]
  4. Clarke, I. N. & Lambden, P. R. ( 1997b; ). Viral zoonoses and food of animal origin: caliciviruses and human disease. Arch Virol Suppl 13, 141–152.
    [Google Scholar]
  5. Clarke, I. N. & Lambden, P. R. ( 2000; ). Organization and expression of calicivirus genes. J Infect Dis 181 (Suppl. 2), S309–316.[CrossRef]
    [Google Scholar]
  6. Dastjerdi, A. M., Green, J., Gallimore, C. I., Brown, D. W. & Bridger, J. C. ( 1999; ). The bovine Newbury agent-2 is genetically more closely related to human SRSVs than to animal caliciviruses. Virology 254, 1–5.[CrossRef]
    [Google Scholar]
  7. Dastjerdi, A. M., Snodgrass, D. R. & Bridger, J. C. ( 2000; ). Characterisation of the bovine enteric calici-like virus, Newbury agent 1. FEMS Microbiol Lett 192, 125–131.[CrossRef]
    [Google Scholar]
  8. Erickson, G. A., Bolin, S. R. & Landgraf, J. G. ( 1991; ). Viral contamination of fetal bovine serum used for tissue culture: risks and concerns. Dev Biol Stand 75, 173–175.
    [Google Scholar]
  9. Feinberg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6–13.[CrossRef]
    [Google Scholar]
  10. Glass, P. J., White, L. J., Ball, J. M., Leparc-Goffart, I., Hardy, M. E. & Estes, M. K. ( 2000; ). Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol 74, 6581–6591.[CrossRef]
    [Google Scholar]
  11. Granzow, H., Weiland, F., Strebelow, H. G., Liu, C. M. & Schirrmeier, H. ( 1996; ). Rabbit hemorrhagic disease virus (RHDV): ultrastructure and biochemical studies of typical and core-like particles present in liver homogenates. Virus Res 41, 163–172.[CrossRef]
    [Google Scholar]
  12. Green, S. M., Dingle, K. E., Lambden, P. R., Caul, E. O., Ashley, C. R. & Clarke, I. N. ( 1994; ). Human enteric Caliciviridae: a new prevalent small round-structured virus group defined by RNA-dependent RNA polymerase and capsid diversity. J Gen Virol 75, 1883–1888.[CrossRef]
    [Google Scholar]
  13. Green, K. Y., Ando, T., Balayan, M. S. & 8 other authors ( 2000; ). Taxonomy of the caliciviruses. J Infect Dis 181 (Suppl. 2), S322–330.[CrossRef]
    [Google Scholar]
  14. Guo, M., Evermann, J. F. & Saif, L. J. ( 2001; ). Detection and molecular characterization of cultivable caliciviruses from clinically normal mink and enteric caliciviruses associated with diarrhea in mink. Arch Virol 146, 479–493.[CrossRef]
    [Google Scholar]
  15. Kärber, G. ( 1931; ). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch Exp Pathol Pharmakol 162, 480–487.[CrossRef]
    [Google Scholar]
  16. Konig, M., Thiel, H. J. & Meyers, G. ( 1998; ). Detection of viral proteins after infection of cultured hepatocytes with rabbit hemorrhagic disease virus. J Virol 72, 4492–4497.
    [Google Scholar]
  17. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  18. Liu, B., Clarke, I. N. & Lambden, P. R. ( 1996; ). Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 70, 2605–2610.
    [Google Scholar]
  19. Liu, B. L., Lambden, P. R., Gunther, H., Otto, P., Elschner, M. & Clarke, I. N. ( 1999a; ). Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses. J Virol 73, 819–825.
    [Google Scholar]
  20. Liu, B. L., Viljoen, G. J., Clarke, I. N. & Lambden, P. R. ( 1999b; ). Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J Gen Virol 80, 291–296.
    [Google Scholar]
  21. Matsuura, Y., Tohya, Y., Onuma, M., Roerink, F., Mochizuki, M. & Sugimura, T. ( 2000; ). Expression and processing of the canine calicivirus capsid precursor. J Gen Virol 81, 195–199.
    [Google Scholar]
  22. Mayr, A., Bachmann, P. A., Bibrack, B. & Wittmann, G. ( 1974; ). Virologische Arbeitsmethoden I/II: VEB. Jena: Gustav Fischer Verlag.
  23. Meyers, G., Wirblich, C., Thiel, H. J. & Thumfart, J. O. (2000; ). Rabbit hemorrhagic disease virus: genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology 276, 349–363.[CrossRef]
    [Google Scholar]
  24. Mochizuki, M., Kawanishi, A., Sakamoto, H., Tashiro, S., Fujimoto, R. & Ohwaki, M. ( 1993; ). A calicivirus isolated from a dog with fatal diarrhoea. Vet Rec 132, 221–222.[CrossRef]
    [Google Scholar]
  25. Neill, J. D. ( 1990; ). Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res 17, 145–160.[CrossRef]
    [Google Scholar]
  26. Neill, J. D. ( 1992; ). Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins. Virus Res 24, 211–222.[CrossRef]
    [Google Scholar]
  27. Neill, J. D., Reardon, I. M. & Heinrikson, R. L. ( 1991; ). Nucleotide sequence and expression of the capsid protein gene of feline calicivirus. J Virol 65, 5440–5447.
    [Google Scholar]
  28. Neill, J. D., Meyer, R. F. & Seal, B. S. ( 1998; ). The capsid protein of vesicular exanthema of swine virus serotype A48: relationship to the capsid protein of other animal caliciviruses. Virus Res 54, 39–50.[CrossRef]
    [Google Scholar]
  29. Ohlinger, V. F., Haas, B., Meyers, G., Weiland, F. & Thiel, H. J. ( 1990; ). Identification and characterization of the virus causing rabbit hemorrhagic disease. J Virol 64, 3331–3336.
    [Google Scholar]
  30. Prasad, B. V., Matson, D. O. & Smith, A. W. ( 1994; ). Three-dimensional structure of calicivirus. J Mol Biol 240, 256–264.[CrossRef]
    [Google Scholar]
  31. Prasad, B. V., Hardy, M. E., Dokland, T., Bella, J., Rossmann, M. G. & Estes, M. K. ( 1999; ). X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290.[CrossRef]
    [Google Scholar]
  32. Roerink, F., Hashimoto, M., Tohya, Y. & Mochizuki, M. ( 1999; ). Organization of the canine calicivirus genome from the RNA polymerase gene to the poly(A) tail. J Gen Virol 80, 929–935.
    [Google Scholar]
  33. Schaffer, F. L., Bachrach, H. L., Brown, F. & 8 other authors ( 1980; ). Caliciviridae. Intervirology 14, 1–6.[CrossRef]
    [Google Scholar]
  34. Sibilia, M., Boniotti, M. B., Angoscini, P., Capucci, L. & Rossi, C. ( 1995; ). Two independent pathways of expression lead to self-assembly of the rabbit hemorrhagic disease virus capsid protein. J Virol 69, 5812–5815.
    [Google Scholar]
  35. Smith, A. W., Akers, T. G., Madin, S. H. & Vedros, N. A. ( 1973; ). San Miguel sea lion virus isolation, preliminary characterization and relationship to vesicular exanthema of swine virus. Nature 244, 108–110.[CrossRef]
    [Google Scholar]
  36. Smith, A. W., Akers, T. G., Latham, A. B., Skilling, D. E. & Bray, H. L. ( 1979; ). A new calicivirus isolated from a marine mammal. Arch Virol 61, 255–259.[CrossRef]
    [Google Scholar]
  37. Smith, A. W., Skilling, D. E. & Benirschke, K. ( 1985; ). Calicivirus isolation from three species of primates: an incidental finding. Am J Vet Res 46, 2197–2199.
    [Google Scholar]
  38. Smith, A. W., Skilling, D. E., Matson, D. O., Kroeker, A. D., Stein, D. A., Berke, T. & Iversen, P. L. ( 2002; ). Detection of vesicular exanthema of swine-like calicivirus in tissues from a naturally infected spontaneously aborted bovine fetus. J Am Vet Med Assoc 220, 455–458.[CrossRef]
    [Google Scholar]
  39. Sosnovtsev, S. V. & Green, K. Y. ( 2000; ). Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology 277, 193–203.[CrossRef]
    [Google Scholar]
  40. Sosnovtsev, S. V., Sosnovtseva, S. A. & Green, K. Y. ( 1998; ). Cleavage of the feline calicivirus capsid precursor is mediated by a virus-encoded proteinase. J Virol 72, 3051–3059.
    [Google Scholar]
  41. Sosnovtsev, S. V., Garfield, M. & Green, K. Y. ( 2002; ). Processing map and essential cleavage sites of the nonstructural polyprotein encoded by ORF1 of the feline calicivirus genome. J Virol 76, 7060–7072.[CrossRef]
    [Google Scholar]
  42. Sosnovtseva, S. A., Sosnovtsev, S. V. & Green, K. Y. ( 1999; ). Mapping of the feline calicivirus proteinase responsible for autocatalytic processing of the nonstructural polyprotein and identification of a stable proteinase-polymerase precursor protein. J Virol 73, 6626–6633.
    [Google Scholar]
  43. Studdert, M. J. ( 1978; ). Caliciviruses. Brief review. Arch Virol 58, 157–191.[CrossRef]
    [Google Scholar]
  44. Thiel, H. J. & Konig, M. ( 1999; ). Caliciviruses: an overview. Vet Microbiol 69, 55–62.[CrossRef]
    [Google Scholar]
  45. van Vuuren, M., Geissler, K., Gerber, D., Nothling, J. O. & Truyen, U. ( 1999; ). Characterisation of a potentially abortigenic strain of feline calicivirus isolated from a domestic cat. Vet Rec 144, 636–638.[CrossRef]
    [Google Scholar]
  46. Wei, L., Huhn, J. S., Mory, A., Pathak, H. B., Sosnovtsev, S. V., Green, K. Y. & Cameron, C. E. ( 2001; ). Proteinase–polymerase precursor as the active form of feline calicivirus RNA-dependent RNA polymerase. J Virol 75, 1211–1219.[CrossRef]
    [Google Scholar]
  47. White, L. J., Ball, J. M., Hardy, M. E., Tanaka, T. N., Kitamoto, N. & Estes, M. K. ( 1996; ). Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol 70, 6589–6597.
    [Google Scholar]
  48. Wirblich, C., Meyers, G., Ohlinger, V. F., Capucci, L., Eskens, U., Haas, B. & Thiel, H. J. ( 1994; ). European brown hare syndrome virus: relationship to rabbit hemorrhagic disease virus and other caliciviruses. J Virol 68, 5164–5173.
    [Google Scholar]
  49. Wirblich, C., Thiel, H. J. & Meyers, G. ( 1996; ). Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 70, 7974–7983.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19042-0
Loading
/content/journal/jgv/10.1099/vir.0.19042-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error