Comparison of virus production in chicken embryo fibroblasts infected with the WR, IHD-J and MVA strains of vaccinia virus: IHD-J is most efficient in -Golgi network wrapping and extracellular enveloped virus release Free

Abstract

Modified vaccinia virus Ankara (MVA) is an attenuated strain derived from vaccinia virus (VV) Ankara that grows efficiently in primary chicken embryo fibroblasts (CEFs) and baby hamster kidney cells only. MVA produces significantly more of the enveloped forms of VV in infected CEFs compared with VV strain Copenhagen. In the present study, production of the different infectious forms of VV was compared in CEFs infected with MVA or with two well-characterized replication-competent VV strains, WR and IHD-J. In a time-course experiment, the infectivity associated with the extracellular enveloped virus (EEV), the cell-associated enveloped virus (CEV) and intracellular mature and enveloped viruses was determined. Further, the production of the different viral forms was quantified by electron microscopy (EM). The data collectively indicate that IHD-J is most efficient in producing all of the -Golgi network-wrapped forms and releases the highest titres of EEVs into the extracellular medium, with WR being least efficient. MVA initially replicated with faster kinetics, resulting in more intracellular virus and CEVs between 8 and 24 h post-infection (p.i.). As assessed by EM, the faster growth kinetics of MVA resulted in 3·5-fold more CEVs at the cell surface at 24 h p.i., compared with both WR and IHD-J. Accordingly, we found that despite the presence of two in-frame deletions in the A36R gene of MVA, this virus was able to make actin tails in CEFs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19016-0
2003-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841383.html?itemId=/content/journal/jgv/10.1099/vir.0.19016-0&mimeType=html&fmt=ahah

References

  1. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396
    [Google Scholar]
  2. Belyakov I. M., Wyatt L. S., Ahlers J. D., Earl P., Pendleton D., Kelsall B. L., Strober W., Moss B., Berzofsky J. A. 1998; Induction of a mucosal cytotoxic T-lymphocyte response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing human immunodeficiency virus 89.6 envelope protein. J Virol 72:8264–8272
    [Google Scholar]
  3. Blasco R., Moss B. 1991; Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by a deletion of the gene encoding the 37,000-dalton outer envelope protein. J Virol 65:5910–5920
    [Google Scholar]
  4. Blasco R., Moss B. 1992; Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J Virol 66:4170–4179
    [Google Scholar]
  5. Blasco R., Sisler J. R., Moss B. 1993; Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J Virol 67:3319–3325
    [Google Scholar]
  6. Boulanger D., Smith T., Skinner M. A. 2000; Morphogenesis and release of fowlpox virus. J Gen Virol 81:675–687
    [Google Scholar]
  7. Carroll M. W., Moss B. 1997; Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238:198–211
    [Google Scholar]
  8. Carroll M. W., Overwijk W. W., Charmberlain R. S., Rosenberg S. A., Moss B., Restifo N. P. 1997; Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model. Vaccine 15:387–394
    [Google Scholar]
  9. Drexler I., Heller K., Wahren B., Erfle V., Sutter G. 1998; Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J Gen Virol 79:347–352
    [Google Scholar]
  10. Drexler I., Antunes E., Schmitz M., Woelfel T., Huber C., Erfle V., Rieber P., Theobald M., Sutter G. 1999; Modified virus Ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase- and melanoma-specific human leukocyte antigen A*0201-restricted cytotoxic T cells in vitro and in vivo. Cancer Res 59:4955–4963
    [Google Scholar]
  11. Earl P. L., Cooper N., Wyatt L. S., Moss B., Carroll M. W. 1998; Titration of MVA stocks by immunostaining. In Current Protocols In Molecular Biology pp. 16.16.9–16.16.11 Edited by Ausubel F. M., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Greene/Wiley Interscience;
    [Google Scholar]
  12. Frischknecht F., Moreau V., Rottger S., Gonfloni S., Reckmann I., Superti-Furga G., Way M. 1999; Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401:926–929
    [Google Scholar]
  13. Gilbert S. C., Schneider J., Plebanski M., Hannan C. M., Blanchard T. J., Smith G. L., Hill A. V. 1999; Ty virus-like particles, DNA vaccines and modified vaccinia virus Ankara: comparison and combinations. Biol Chem 380:299–303
    [Google Scholar]
  14. Griffiths G. 1993 Fine Structure Immunocytochemistry Heidelberg: Springer;
    [Google Scholar]
  15. Hirsch V. M., Fuerst T. R., Sutter G. 9 other authors 1996; Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SIV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. J Virol 70:3741–3752
    [Google Scholar]
  16. Hollinshead M., Rodger G., Van Eijl H., Law M., Hollinshead R., Vaux D. J. T., Smith G. L. 2001; Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154:389–402
    [Google Scholar]
  17. Katz E., Moss B. 1997; Immunogenicity of recombinant vaccinia viruses that display the HIV type I envelope glycoprotein on the surface of infectious virions. AIDS Res 13:1497–1500
    [Google Scholar]
  18. Katz E., Wolffe E. J., Moss B. 1997; The cytoplasmic and transmembrane domains of the vaccinia virus B5R protein target a chimeric human immunodeficiency virus type I glycoprotein to the outer envelope of nascent vaccinia virions. J Virol 71:3178–3187
    [Google Scholar]
  19. Katz E., Wolffe E. J., Moss B. 2002; Identification of second-site mutations that enhance release and spread of vaccinia virus. J Virol 76:11637–11644
    [Google Scholar]
  20. Mayr A., Hochstein-Mintzel V., Stickl H. 1975; Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 3:6–14
    [Google Scholar]
  21. Mayr A., Stickl H., Müller H. K., Danner K., Singer H. 1978; Der Pockenimpfstamm MVA: Marker, genetische Struktur, Erfahrungen mit der parenteralen Schutzimpfung und Verhalten im abwehrgeschwächten Organismus. Zentbl Bakteriol Hyg, I, Abt Orig B 167:375–390
    [Google Scholar]
  22. Moss B., Ward B. M. 2001; High-speed mass transit for poxviruses on microtubules. Nat Cell Biol 3:E245–246
    [Google Scholar]
  23. Payne L. G. 1979; Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. J Virol 31:147–155
    [Google Scholar]
  24. Payne L. G. 1980; Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J Gen Virol 50:89–100
    [Google Scholar]
  25. Pedersen K., Snijder E. J., Schleich S., Roos N., Griffiths G., Krijnse Locker J. 2000; Characterization of vaccinia virus intracellular cores: implications for viral uncoating and core structure. J Virol 74:3525–3536
    [Google Scholar]
  26. Rietdorf J., Ploubidou A., Reckmann I., Holmstrom A., Frischknecht F., Zettl M., Zimmermann T., Way M. 2001; Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3:992–1000
    [Google Scholar]
  27. Risco C., Rodriguez J. R., Lopez-Iglesias C., Carrascosa J. L., Esteban M., Rodriguez D. 2002; Endoplasmic reticulum–Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J Virol 76:1839–1855
    [Google Scholar]
  28. Sancho M. C., Schleich S., Griffiths G., Krijnse Locker J. 2002; The block in morphogenesis of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus assembly. J Virol 76:8318–8334
    [Google Scholar]
  29. Schmelz M., Sodeik B., Ericsson M., Wolffe E., Shida H., Hiller G., Griffiths G. 1994; Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68:130–147
    [Google Scholar]
  30. Schneider J., Gilbert S. C., Blanchard T. J. 7 other authors 1998; Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4:397–402
    [Google Scholar]
  31. Sodeik B., Krijnse Locker J. 2002; Assembly of vaccinia virus revisited: de novo membrane synthesis or acquisition from the host?. Trends Microbiol 10:15–24
    [Google Scholar]
  32. Spehner D., Drillien R., Proamer F., Houssais-Pêcheur C., Zanta M.-A., Geist M., Dott K., Balloul J.-M. 2000; Enveloped virus is the major virus form produced during productive infection with modified vaccinia virus Ankara strain. Virology 273:9–15
    [Google Scholar]
  33. Staib C., Drexler I., Ohlmann M., Wintersperger S., Erfle V., Sutter G. 2000; Transient host range selection for genetic engineering of modified vaccinia virus Ankara. Biotechniques 28: 1137–1142, 1144–1146
    [Google Scholar]
  34. Stickl H., Hochstein-Mintzel V., Mayr A., Huber H., Schaefer H., Holzner A. 1974; MVA-Stufenimpfung gegen Pocken. Dtsch Med Wochenschr 99:2386–2392
    [Google Scholar]
  35. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847–10851
    [Google Scholar]
  36. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040
    [Google Scholar]
  37. Ulaeto D., Grosenbach D., Hruby D. E. 1995; Brefeldin A inhibits vaccinia virus envelopment but does not prevent normal processing and localization of the putative envelopment receptor P37. J Gen Virol 76:103–111
    [Google Scholar]
  38. van der Meer Y., Snijder E. J., Dobbe J. C., Schleich S., Denison M. R., Spaan W. J. M., Krijnse Locker J. 1999; The localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 73:7641–7657
    [Google Scholar]
  39. van Eijl H., Hollinshead M., Rodger G., Zhang W. H., Smith G. L. 2002; The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J Gen Virol 83:195–207
    [Google Scholar]
  40. Ward B. M., Moss B. 2001; Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein–B5R membrane protein chimera. J Virol 75:4802–4813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19016-0
Loading
/content/journal/jgv/10.1099/vir.0.19016-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed