1887

Abstract

RNA genomes of enteroviruses and rhinoviruses contain a 5′-terminal structure, the cloverleaf (CL), which serves as signal in RNA synthesis. Substitution of the poliovirus [PV1(M)] CL with that of human rhinovirus type 2 (HRV2) was shown previously to produce a viable chimeric PV, whereas substitution with the HRV14 CL produced a null phenotype. Fittingly, the HRV14 CL failed to form a complex with PV-specific proteins 3CD–3AB or 3CD–PCBP2, considered essential for RNA synthesis. It was reported previously ( Rohll , , 4384–4391, 1994 ) that the major determinant for the null phenotype of a PV/HRV14 chimera resides in subdomain Id of the HRV14 CL. Using a chimeric PV/HRV14 CL in the context of the PV genome, stem–loop Id of HRV14 CL was genetically dissected. It contains the sequence C -G, the underlined nucleotides forming the loop that is shorter by 1 nt when compared to the corresponding PV structure (U G). Insertion of a G nucleotide to form a tetra loop (C G) did not rescue replication of the chimera. However, an additional mutation at position 60 (C G) yielded a replicating genome. Only the mutant PV/HRV14 CL with the tetra loop formed ternary complexes efficiently with either PV proteins 3CD–3AB or 3CD–PCBP2. Thus, in the context of PV RNA synthesis, the presence of a tetra loop in subdomain D of the CL per se is not sufficient for function. The sequence and, consequently, the structure of the tetra loop plays an essential role. Biochemical assays demonstrated that the function of the CL element and the function of the -acting replication element in the 3D–3CD-dependent uridylylation of VPg are not linked.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19013-0
2003-08-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842203.html?itemId=/content/journal/jgv/10.1099/vir.0.19013-0&mimeType=html&fmt=ahah

References

  1. Agol, V. I., Paul, A. V. & Wimmer, E. ( 1999; ). Paradoxes of the replication of picornaviral genomes. Virus Res 62, 129–147.[CrossRef]
    [Google Scholar]
  2. Alexander, L., Lu, H. H. & Wimmer, E. ( 1994; ). Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A 91, 1406–1410.[CrossRef]
    [Google Scholar]
  3. Allain, F. H. & Varani, G. ( 1995; ). Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Nucleic Acids Res 23, 341–350.[CrossRef]
    [Google Scholar]
  4. Andino, R., Rieckhof, G. E. & Baltimore, D. ( 1990; ). A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63, 369–380.[CrossRef]
    [Google Scholar]
  5. Andino, R., Rieckhof, G. E., Achacoso, P. L. & Baltimore, D. ( 1993; ). Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. EMBO J 12, 3587–3598.
    [Google Scholar]
  6. Barton, D. J., O'Donnell, B. J. & Flanegan, J. B. ( 2001; ). 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J 20, 1439–1448.[CrossRef]
    [Google Scholar]
  7. Blair, W. S., Parsley, T. B., Bogerd, H. P., Towner, J. S., Semler, B. L. & Cullen, B. R. ( 1998; ). Utilization of a mammalian cell-based RNA binding assay to characterize the RNA binding properties of picornavirus 3C proteinases. RNA 4, 215–225.
    [Google Scholar]
  8. Blyn, L. B., Swiderek, K. M., Richards, O., Stahl, D. C., Semler, B. L. & Ehrenfeld, E. ( 1996; ). Poly(rC) binding protein 2 binds to stem–loop IV of the poliovirus RNA 5′ noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc Natl Acad Sci U S A 93, 11115–11120.[CrossRef]
    [Google Scholar]
  9. Borman, A. M., Deliat, F. G. & Kean, K. M. ( 1994; ). Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J 13, 3149–3157.
    [Google Scholar]
  10. Cornell, C. T. & Semler, B. L. ( 2002; ). Subdomain specific functions of the RNA polymerase region of poliovirus 3CD polypeptide. Virology 298, 200–213.[CrossRef]
    [Google Scholar]
  11. Gamarnik, A. V. & Andino, R. ( 1997; ). Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3, 882–892.
    [Google Scholar]
  12. Gamarnik, A. V. & Andino, R. ( 1998; ). Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12, 2293–2304.[CrossRef]
    [Google Scholar]
  13. Gamarnik, A. V. & Andino, R. ( 2000; ). Interactions of viral protein 3CD and poly(rC) binding protein with the 5′ untranslated region of the poliovirus genome. J Virol 74, 2219–2226.[CrossRef]
    [Google Scholar]
  14. Gerber, K., Wimmer, E. & Paul, A. V. ( 2001; ). Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis-replicating element in the coding sequence of 2Apro. J Virol 75, 10979–10990.[CrossRef]
    [Google Scholar]
  15. Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J. W., Barclay, W. & Evans, D. J. ( 2000; ). Identification of a cis-acting replication element within the poliovirus coding region. J Virol 74, 4590–4600.[CrossRef]
    [Google Scholar]
  16. Gulevich, A. Y., Yusupova, R. A. & Drygin, Y. F. ( 2002; ). VPg unlinkase, the phosphodiesterase that hydrolyzes the bond between VPg and picornavirus RNA: a minimal nucleic moiety of the substrate. Biochemistry 67, 615–621.
    [Google Scholar]
  17. Harris, K. S., Xiang, W., Alexander, L., Lane, W. S., Paul, A. V. & Wimmer, E. ( 1994; ). Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J Biol Chem 269, 27004–27014.
    [Google Scholar]
  18. Herold, J. & Andino, R. ( 2000; ). Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J Virol 74, 6394–6400.[CrossRef]
    [Google Scholar]
  19. Herold, J. & Andino, R. ( 2001; ). Poliovirus RNA replication requires genome circularization through a protein–protein bridge. Mol Cell 7, 581–591.[CrossRef]
    [Google Scholar]
  20. Hewlett, M. J., Rose, J. K. & Baltimore, D. ( 1976; ). 5′-Terminal structure of poliovirus polyribosomal RNA is pUp. Proc Natl Acad Sci U S A 73, 327–330.[CrossRef]
    [Google Scholar]
  21. Johnson, V. H. & Semler, B. L. ( 1988; ). Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5′-noncoding regions of viral RNAs. Virology 162, 47–57.[CrossRef]
    [Google Scholar]
  22. Kusov, Y. Y. & Gauss-Muller, V. ( 1997; ). In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3Cpro) to secondary structure elements within the 5′ terminus of the HAV genome. RNA 3, 291–302.
    [Google Scholar]
  23. Lama, J., Paul, A. V., Harris, K. S. & Wimmer, E. ( 1994; ). Properties of purified recombinant poliovirus protein 3AB as substrate for viral proteinases and as co-factor for viral polymerase 3Dpol. J Biol Chem 269, 66–70.
    [Google Scholar]
  24. Larsen, G. R., Semler, B. L. & Wimmer, E. ( 1981; ). Stable hairpin structure within the 5′-terminal 85 nucleotides of poliovirus RNA. J Virol 37, 328–335.
    [Google Scholar]
  25. Lee, Y. F., Nomoto, A., Detjen, B. M. & Wimmer, E. ( 1977; ). The genome-linked protein of picornaviruses. I. A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci U S A 74, 59–63.[CrossRef]
    [Google Scholar]
  26. Leong, L. E., Walker, P. A. & Porter, A. G. ( 1993; ). Human rhinovirus-14 protease 3C (3Cpro) binds specifically to the 5′-noncoding region of the viral RNA. Evidence that 3Cpro has different domains for the RNA binding and proteolytic activities. J Biol Chem 268, 25735–25739.
    [Google Scholar]
  27. Lobert, P. E., Escriou, N., Ruelle, J. & Michiels, T. ( 1999; ). A coding RNA sequence acts as a replication signal in cardioviruses. Proc Natl Acad Sci U S A 96, 11560–11565.[CrossRef]
    [Google Scholar]
  28. Lyons, T., Murray, K. E., Roberts, A. W. & Barton, D. J. ( 2001; ). Poliovirus 5′-terminal cloverleaf RNA is required in cis for VPg uridylylation and the initiation of negative-strand RNA synthesis. J Virol 75, 10696–10708.[CrossRef]
    [Google Scholar]
  29. Mason, P. W., Bezborodova, S. V. & Henry, T. M. ( 2002; ). Identification and characterization of a cis-acting replication element (cre) adjacent to the internal ribosome entry site of foot-and-mouth disease virus. J Virol 76, 9686–9694.[CrossRef]
    [Google Scholar]
  30. McKnight, K. L. & Lemon, S. M. ( 1996; ). Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol 70, 1941–1952.
    [Google Scholar]
  31. McKnight, K. L. & Lemon, S. M. ( 1998; ). The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4, 1569–1584.[CrossRef]
    [Google Scholar]
  32. Molla, A., Paul, A. V. & Wimmer, E. ( 1991; ). Cell-free, de novo synthesis of poliovirus. Science 254, 1647–1651.[CrossRef]
    [Google Scholar]
  33. Nomoto, A., Lee, Y. F. & Wimmer, E. ( 1976; ). The 5′ end of poliovirus mRNA is not capped with m7G(5′)ppp(5′)Np. Proc Natl Acad Sci U S A 73, 375–380.[CrossRef]
    [Google Scholar]
  34. Nowakowski, J. & Tinoco, I. ( 1997; ). RNA structure and stability. Semin Virol 8, 153–165.[CrossRef]
    [Google Scholar]
  35. Parsley, T. B., Towner, J. S., Blyn, L. B., Ehrenfeld, E. & Semler, B. L. ( 1997; ). Poly(rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3, 1124–1134.
    [Google Scholar]
  36. Paul, A. V. ( 2002; ). Possible unifying mechanism of picornavirus genome replication. In Molecular Biology of Picornaviruses, p227–246. Edited by B. L. Semler and E. Wimmer. Washington: ASM Press.
  37. Paul, A. V., Cao, X., Harris, K. S., Lama, J. & Wimmer, E. ( 1994; ). Studies with poliovirus polymerase 3Dpol. Stimulation of poly(U) synthesis in vitro by purified poliovirus protein 3AB. J Biol Chem 269, 29173–29181.
    [Google Scholar]
  38. Paul, A. V., van Boom, J. H., Filippov, D. & Wimmer, E. ( 1998; ). Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393, 280–284.[CrossRef]
    [Google Scholar]
  39. Paul, A. V., Rieder, E., Kim, D. W., van Boom, J. H. & Wimmer, E. ( 2000; ). Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74, 10359–10370.[CrossRef]
    [Google Scholar]
  40. Paul, A. V., Peters, J., Mugavero, J., Yin, J., van Boom, J. H. & Wimmer, E. ( 2003; ). Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77, 891–904.[CrossRef]
    [Google Scholar]
  41. Pfister, T. & Wimmer, E. ( 1999; ). Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem 274, 6992–7001.[CrossRef]
    [Google Scholar]
  42. Rieder, E., Paul, A. V., Kim, D. W., van Boom, J. H. & Wimmer, E. ( 2000; ). Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to VPg uridylylation. J Virol 74, 10371–10380.[CrossRef]
    [Google Scholar]
  43. Rivera, V. M., Welsh, J. D. & Maizel, J. V. Jr ( 1988; ). Comparative sequence analysis of the 5′ noncoding region of the enteroviruses and rhinoviruses. Virology 165, 42–50.[CrossRef]
    [Google Scholar]
  44. Rohll, J. B., Percy, N., Ley, R., Evans, D. J., Almond, J. W. & Barclay, W. S. ( 1994; ). The 5′-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol 68, 4384–4391.
    [Google Scholar]
  45. Shiroki, K., Ishii, T., Aoki, T., Kobashi, M., Ohta, S. & Nomoto, A. ( 1995; ). A new cis-acting element for RNA replication within the 5′ noncoding region of poliovirus type 1 RNA. J Virol 69, 6825–6832.
    [Google Scholar]
  46. Simoes, E. A. F. & Sarnow, P. ( 1991; ). An RNA hairpin at the extreme 5′ end of the poliovirus RNA genome modulates viral translation in human cells. J Virol 65, 913–921.
    [Google Scholar]
  47. Teterina, N. L., Egger, D., Bienz, K., Brown, D. M., Semler, B. L. & Ehrenfeld, E. ( 2001; ). Requirements for assembly of poliovirus replication complexes and negative-strand RNA synthesis. J Virol 75, 3841–3850.[CrossRef]
    [Google Scholar]
  48. Todd, S., Towner, J. S. & Semler, B. L. ( 1997; ). Translation and replication properties of the human rhinovirus genome in vivo and in vitro. Virology 229, 90–97.[CrossRef]
    [Google Scholar]
  49. van der Werf, S., Bradley, J., Wimmer, E., Studier, F. W. & Dunn, J. J. ( 1986; ). Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 2330–2334.[CrossRef]
    [Google Scholar]
  50. Walker, P. A., Leong, L. E. C. & Porter, A. G. ( 1995; ). Sequence and structural determinants of the interaction between the 5′-noncoding region of picornavirus RNA and rhinovirus protease 3C. J Biol Chem 270, 14510–14516.[CrossRef]
    [Google Scholar]
  51. Walter, B. L., Parsley, T. B., Ehrenfeld, E. & Semler, B. L. ( 2002; ). Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J Virol 76, 12008–12022.[CrossRef]
    [Google Scholar]
  52. Wimmer, E. ( 1997; ). Recognition signals on RNA genomes. Semin Virol 8, 151–152.[CrossRef]
    [Google Scholar]
  53. Wimmer, E., Hellen, C. U. T. & Cao, X. M. ( 1993; ). Genetics of poliovirus. Annu Rev Genet 27, 353–436.[CrossRef]
    [Google Scholar]
  54. Xiang, W., Cuconati, A., Paul, A. V., Cao, X. & Wimmer, E. ( 1995a; ). Molecular dissection of the multifunctional poliovirus RNA-binding protein 3AB. RNA 1, 892–904.
    [Google Scholar]
  55. Xiang, W., Harris, K. S., Alexander, L. & Wimmer, E. ( 1995b; ). Interaction between the 5′-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J Virol 69, 3658–3667.
    [Google Scholar]
  56. Xiang, W., Paul, A. V. & Wimmer, E. ( 1997; ). RNA signals in entero- and rhinovirus genome replication. Rec Sig RNA Gen 8, 256–273.
    [Google Scholar]
  57. Yin, J., Paul, A. V., Wimmer, E. & Rieder, E. ( 2003; ). Functional dissection of a poliovirus cis-acting replication element [PV-cre(2C)]: analysis of single- and dual-cre viral genomes and proteins that bind specifically to PV-cre RNA. J Virol 77, 5152–5166.[CrossRef]
    [Google Scholar]
  58. Zell, R., Klingel, K., Sauter, M., Fortmuller, U. & Kandolf, R. ( 1995; ). Coxsackieviral proteins functionally recognize the polioviral cloverleaf structure of the 5′-NTR of a chimeric enterovirus RNA: influence of species-specific host cell factors on virus growth. Virus Res 39, 87–103.[CrossRef]
    [Google Scholar]
  59. Zell, R., Sidigi, K., Henke, A., Schmidt-Brauns, J., Hoey, E., Martin, S. & Stelzner, A. ( 1999; ). Functional features of the bovine enterovirus 5′-non-translated region. J Gen Virol 80, 2299–2309.
    [Google Scholar]
  60. Zell, R., Sidigi, K., Bucci, E., Stelzner, A. & Gorlach, M. ( 2002; ). Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C. RNA 8, 188–201.[CrossRef]
    [Google Scholar]
  61. Zhao, W. D. & Wimmer, E. ( 2001; ). Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J Virol 75, 3719–3730.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19013-0
Loading
/content/journal/jgv/10.1099/vir.0.19013-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error