1887

Abstract

Orf virus (ORFV) belongs to the genus and induces cutaneous pustular lesions in sheep, goats and humans. ORFV is unusual in that it has the ability to reinfect its host and this suggests that the generation of immunological memory has been impaired, thus exposing the host to subsequent infection. The discovery that ORFV encodes an IL-10-like virokine raises the question of whether this factor adversely affects the cells that initiate the acquired immune response. We examined the effect of ORFV-IL-10 on immature murine bone marrow-derived dendritic cells (BMDC). Immature BMDC are activated on exposure to antigen and undergo maturation. This process is characterized by increased expression of CD80, CD86 and MHC class II and reduced antigen uptake. We found that the maturation of BMDC is impaired in cells treated with ORFV-IL-10 prior to antigen exposure and this was exemplified by the reduced expression of the cell-surface markers described above. We have also shown that the activation of a haemagglutinin peptide (HAT)-specific T cell hybridoma by dendritic cell-mediated presentation of HAT and heat-inactivated influenza virus AP8/34 was markedly reduced following exposure to ORFV-IL-10. Finally, we examined the effect of ORFV-IL-10 on Langerhans' cell (LC) migration using cultured murine skin explant tissue and showed that this virokine impaired the spontaneous migration of LC from the epidermis and induced changes in LC morphology. Our findings suggest that ORFV-IL-10 has the capacity to impair the initiation of an acquired immune response and hence inhibit the generation of immunological memory necessary for immunity on subsequent exposure.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18978-0
2003-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841101.html?itemId=/content/journal/jgv/10.1099/vir.0.18978-0&mimeType=html&fmt=ahah

References

  1. Alcami, A. & Koszinowski, U. H. ( 2000; ). Viral mechanisms of immune evasion. Mol Med Today 6, 365–372.[CrossRef]
    [Google Scholar]
  2. Andersen, P. S., Geisler, C., Buus, S., Mariuzza, R. A. & Karjalainen, K. ( 2001; ). Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens. J Biol Chem 276, 33452–33457.[CrossRef]
    [Google Scholar]
  3. Austyn, J. M. ( 1996; ). New insights into the mobilization and phagocytic activity of dendritic cells. J Exp Med 183, 1287–1292.[CrossRef]
    [Google Scholar]
  4. Buddle, B. M. & Pulford, H. D. ( 1984; ). Effect of passively acquired antibodies and vaccination on the immune response to contagious ecthyma virus. Vet Microbiol 9, 515–522.[CrossRef]
    [Google Scholar]
  5. Buelens, C., Verhasselt, V., De Groote, D., Thielemans, K., Goldman, M. & Willems, F. ( 1997; ). Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granulocyte/macrophage-colony-stimulating factor. Eur J Immunol 27, 756–762.[CrossRef]
    [Google Scholar]
  6. Büttner, M. & Rziha, H.-J. ( 2002; ). Parapoxviruses: from the lesion to the viral genome. J Vet Med B Infect Dis Vet Public Health 49, 7–16.[CrossRef]
    [Google Scholar]
  7. Casares, S., Inaba, K., Brumeanu, T. D., Steinman, R. M. & Bona, C. A. ( 1997; ). Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class-II restricted epitope. J Exp Med 186, 1481–1486.[CrossRef]
    [Google Scholar]
  8. Cumberbatch, M. & Kimber, I. ( 1992; ). Dermal tumour necrosis factor-α induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans' cell migration. Immunology 75, 257–263.
    [Google Scholar]
  9. Czerny, C. P., Waldmann, R. & Scheubeck, T. ( 1997; ). Identification of three distinct antigenic sites in parapoxviruses. Arch Virol 142, 807–821.[CrossRef]
    [Google Scholar]
  10. Deane, D. L., McInnes, C. J., Percival, A. & 7 other authors ( 2000; ). Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J Virol 74, 1313–1320.[CrossRef]
    [Google Scholar]
  11. Demangel, C., Bean, A. G., Martin, E., Feng, C. G., Kamath, A. T. & Britton, W. J. ( 1999; ). Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guerin-infected dendritic cells. Eur J Immunol 29, 1972–1979.[CrossRef]
    [Google Scholar]
  12. Faulkner, L., Buchan, G. & Baird, M. ( 2000; ). Interleukin-10 does not affect phagocytosis of particulate antigen by bone marrow-derived dendritic cells but does impair antigen presentation. Immunology 99, 523–531.[CrossRef]
    [Google Scholar]
  13. Faulkner, L., Buchan, G., Lockhart, E., Slobbe, L., Wilson, M. & Baird, M. ( 2001; ). IL-2 linked to a peptide from influenza hemagglutinin enhances T cell activation by affecting the antigen-presentation function of bone marrow-derived dendritic cells. Int Immunol 13, 713–721.[CrossRef]
    [Google Scholar]
  14. Fickenscher, H., Hör, S., Küpers, H., Knappe, A., Wittmann, S. & Sticht, H. ( 2002; ). The interleukin-10 family of cytokines. Trends Immunol 23, 89–96.[CrossRef]
    [Google Scholar]
  15. Fiebiger, E., Meraner, P., Weber, E., Fang, I. F., Stingl, G., Ploegh, H. & Maurer, D. ( 2001; ). Cytokines regulate proteolysis in major histocompatibility complex class II-dependent antigen presentation by dendritic cells. J Exp Med 193, 881–892.[CrossRef]
    [Google Scholar]
  16. Filgueira, L., Nestle, F. O., Rittig, M., Joller, H. I. & Groscurth, P. ( 1996; ). Human dendritic cells phagocytose and process Borrelia burgdorferi. J Immunol 157, 2998–3005.
    [Google Scholar]
  17. Fleming, S. B., McCaughan, C. A., Andrews, A. E., Nash, A. D. & Mercer, A. A. ( 1997; ). A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol 71, 4857–4861.
    [Google Scholar]
  18. Granucci, F., Andrews, D. M., Degli-Esposito, M. A. & Ricciardi-Castagnoli, P. ( 2002; ). IL-2 mediates adjuvant effect of dendritic cells. Trends Immunol 23, 169–171.[CrossRef]
    [Google Scholar]
  19. Haig, D. M. & McInnes, C. J. ( 2002; ). Immunity and counter-immunity during infection with the parapoxvirus orf virus. Virus Res 88, 3–16.[CrossRef]
    [Google Scholar]
  20. Haig, D., Deane, D., Percival, A. & 8 other authors ( 1996; ). The cytokine response of afferent lymph following orf virus reinfection of sheep. Vet Dermatol 7, 11–20.[CrossRef]
    [Google Scholar]
  21. Haig, D. M., McInnes, C. J., Thomson, J., Wood, A., Bunyan, K. & Mercer, A. A. ( 1998; ). The orf virus OV 20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double stranded RNA-dependent kinase. Immunology 93, 335–340.
    [Google Scholar]
  22. Haig, D. M., Thomson, J., McInnes, C. J. & 7 other authors ( 2002; ). A comparison of the anti-inflammatory and immuno-stimulatory activities of orf virus and ovine interleukin-10. Virus Res 90, 303–316.[CrossRef]
    [Google Scholar]
  23. Henderson, R. A., Watkins, S. C. & Flynn, J. L. ( 1997; ). Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol 159, 635–643.
    [Google Scholar]
  24. Huang, L. Y., Reis e Sousa, C., Itoh, Y., Inman, J. & Scott, D. E. ( 2001; ). IL-12 induction by a TH1-inducing adjuvant in vivo: dendritic cell subsets and regulation by IL-10. J Immunol 167, 1423–1430.[CrossRef]
    [Google Scholar]
  25. Imlach, W., McCaughan, C. A., Mercer, A. A., Haig, D. & Fleming, S. B. ( 2002; ). Orf virus-encoded interleukin-10 stimulates the proliferation of murine mast cells and inhibits cytokine synthesis in murine peritoneal macrophages. J Gen Virol 83, 1049–1058.
    [Google Scholar]
  26. Inaba, K., Inaba, M., Romani, N., Hideki, A., Deguchi, M., Ikehara, S., Muramatsu, S. & Steinman, R. M. ( 1992; ). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with GM-CSF. J Exp Med 176, 1693–1702.[CrossRef]
    [Google Scholar]
  27. Inaba, K., Inaba, M., Deguchi, M., Hagi, K., Yasumizu, R., Ikehara, S., Muramatsu, S. & Steinman, R. M. ( 1993; ). Granulocytes, macrophages and dendritic cells arise from a common MHC class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci U S A 90, 3038–3042.[CrossRef]
    [Google Scholar]
  28. Jenkinson, D. M., Hutchison, G., Onwuka, S. K. & Reid, H. W. ( 1991; ). Changes in the MHC class II+ dendritic cell population of ovine skin in response to orf virus infection. Vet Dermatol 2, 1–9.[CrossRef]
    [Google Scholar]
  29. Johnston, L. J., Halliday, G. M. & King, N. J. ( 1996; ). Phenotypic changes in Langerhans' cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 70, 4761–4766.
    [Google Scholar]
  30. Kaplan, G., Walsh, G., Guido, L. S. & 7 other authors ( 1992; ). Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans' cell recruitment, keratinocyte growth and advanced wound healing. J Exp Med 175, 1717–1728.[CrossRef]
    [Google Scholar]
  31. Kimber, I., Cumberbatch, M., Dearman, R. J., Bhushan, M. & Griffiths, C. E. ( 2000; ). Cytokines and chemokines in the initiation and regulation of epidermal Langerhans' cell mobilization. Br J Dermatol 142, 401–412.[CrossRef]
    [Google Scholar]
  32. Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V. & Pestka, S. ( 2000; ). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc Natl Acad Sci U S A 97, 1695–1700.[CrossRef]
    [Google Scholar]
  33. Lear, A., Hutchinson, G., Reid, H. W., Norval, M. & Haig, D. M. ( 1996; ). Phenotypic characterisation of the dendritic cells accumulating in ovine dermis following primary and secondary orf virus infections. Eur J Dermatol 6, 135–140.[CrossRef]
    [Google Scholar]
  34. Lee, H. J., Essani, K. & Smith, G. L. ( 2001; ). The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281, 170–192.[CrossRef]
    [Google Scholar]
  35. Lloyd, J. B., Gill, H. S., Haig, D. M. & Husband, A. J. ( 2000; ). In vivo T-cell subset depletion suggests that CD4+ T-cells and a humoral immune response are important for the elimination of orf virus from the skin of sheep. Vet Immunol Immunopathol 74, 249–262.[CrossRef]
    [Google Scholar]
  36. McInnes, C. J., Wood, A. R. & Mercer, A. A. ( 1998; ). Orf virus encodes a homolog of the vaccinia virus interferon-resistance gene E3L. Virus Genes 17, 107–115.[CrossRef]
    [Google Scholar]
  37. McKeever, D. J., Jenkinson, D. M., Hutchison, G. & Reid, H. W. ( 1988; ). Studies on the pathogenesis of orf virus infection in sheep. J Comp Pathol 99, 317–328.[CrossRef]
    [Google Scholar]
  38. Mercer, A. A., Yirrell, D. L., Reid, H. W. & Robinson, A. J. ( 1994; ). Lack of cross-protection between vaccinia virus and orf virus in hysterectomy-procured, barrier maintained lambs. Vet Microbiol 41, 373–382.[CrossRef]
    [Google Scholar]
  39. Mercer, A. A., Lyttle, D. J., Whelan, E. M., Fleming, S. B. & Sullivan, J. T. ( 1995; ). The establishment of a genetic map of orf virus reveals a pattern of genomic organization that is highly conserved among divergent poxviruses. Virology 212, 698–704.[CrossRef]
    [Google Scholar]
  40. Moore, K. W., Vieira, P., Fiorentino, D. F., Trounstine, M. L., Khan, T. A. & Mosmann, T. R. ( 1990; ). Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRF1. Science 248, 1230–1234.[CrossRef]
    [Google Scholar]
  41. Morel, A. S., Quaratino, S., Douek, D. C. & Londei, M. ( 1997; ). Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells: definition of a maturative step. Eur J Immunol 27, 26–34.[CrossRef]
    [Google Scholar]
  42. Palucka, K. & Banchereau, J. ( 2002; ). How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol 14, 420–431.[CrossRef]
    [Google Scholar]
  43. Roake, J. A., Rao, A. S., Morris, P. J., Larsen, C. P., Hankins, D. F. & Austyn, J. M. ( 1995; ). Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J Exp Med 181, 2237–2247.[CrossRef]
    [Google Scholar]
  44. Robinson, A. J. & Balassu, T. C. ( 1981; ). Contagious pustular dermatitis (orf). Vet Bull 51, 771–781.
    [Google Scholar]
  45. Rode, H. J., Janseen, W., Roseen-Wolff, A., Bugert, J. J., Thein, P., Becker, Y. & Darai, G. ( 1993; ). The genome of equine herpes virus type 2 harbors an interleukin-10 (IL-10)-like gene. Virus Genes 7, 111–116.[CrossRef]
    [Google Scholar]
  46. Schakel, K., Mayer, E., Federle, C., Schmitz, M., Riethmuller, G. & Reiber, E. P. ( 1998; ). A novel dendritic cell population in human blood: one step immunomagnetic isolation by a specific mAb (M-DC-8) and in vitro priming of cytotoxic T lymphocytes. Eur J Immunol 28, 4084–4093.[CrossRef]
    [Google Scholar]
  47. Scheicher, C., Mehlig, M., Zecher, R. & Reske, K. ( 1992; ). Dendritic cells from bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J Immunol Methods 154, 253–264.[CrossRef]
    [Google Scholar]
  48. Steinman, R. M. & Swanson, J. ( 1995; ). The endocytic activity of dendritic cells. J Exp Med 182, 283–288.[CrossRef]
    [Google Scholar]
  49. Su, H., Messer, R., Whitmire, W., Fischer, E., Portis, J. C. & Caldwell, H. D. ( 1998; ). Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable chlamydiae. J Exp Med 188, 809–818.[CrossRef]
    [Google Scholar]
  50. Takayama, T., Morelli, A. E., Onai, N., Hirao, M., Matsushima, K., Tahara, H. & Thomson, A. W. ( 2001; ). Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol 166, 7136–7143.[CrossRef]
    [Google Scholar]
  51. Teunissen, M. B., Wormmeester, J., Krieg, S. R., Peters, P. J., Vogels, I. M., Kapsenberg, M. L. & Bos, J. D. ( 1990; ). Human epidermal Langerhans' cells undergo profound morphologic and phenotypical changes during in vitro culture. J Investig Dermatol 94, 166–173.[CrossRef]
    [Google Scholar]
  52. Wang, B., Zhuang, L., Fujisawa, H. & 7 other authors ( 1999; ). Enhanced epidermal Langerhans' cell migration in IL-10 knockout mice. J Immunol 162, 277–283.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18978-0
Loading
/content/journal/jgv/10.1099/vir.0.18978-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error