1887

Abstract

Enteroviruses show a high degree of sequence variation both between and within serotypes due to the lack of proofreading of the viral RNA-dependent RNA polymerase. In addition, recombination is known to occur not only within but also between different serotypes. We have previously shown that capsid coding sequences of coxsackievirus B4 (CVB4) cluster in several coexisting genotypes (intergenotypic nucleotide difference of 12 % or more) whereas a single lineage of echovirus 30 (EV30) has been prevailing and evolving throughout the last two decades. In the major capsid gene, VP1, clustering of both nucleotide and amino acid sequences correlates with serotype. We have now determined a 501 nucleotide sequence in the non-structural 3CD region of CVB4 and EV30 field strains. Phylogenetic analysis revealed that sequences of (HEV-B) were segregated in the 3CD region into three distinct clusters without the VP1-associated serotype/genotype correlation. One of the clusters comprised the E2 strain of CVB4, the EV30 prototype and five other CVB4 field strains whereas the other two clusters, in addition to CVB4 and EV30 strains, also included other HEV-B serotypes. We believe that intertypic recombination is the most likely explanation for the observed incongruence. Similarity analysis based on complete genomes of the CVB4 and EV30 prototypes and the CVB4 E2 strain revealed that a putative recombination spot was mapped within the 2B gene. The incongruence observed in the two genomic domains (P1 and P3) suggests a certain degree of independent evolution, which may be explained by interserotypic recombination within an enterovirus species. It is thus difficult to exclude recombination in the history of any given strain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18971-0
2003-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841223.html?itemId=/content/journal/jgv/10.1099/vir.0.18971-0&mimeType=html&fmt=ahah

References

  1. Andersson, P., Edman, K. & Lindberg, A. M. ( 2002; ). Molecular analysis of the echovirus 18 prototype. Evidence of interserotypic recombination with echovirus 9. Virus Res 85, 71–83.[CrossRef]
    [Google Scholar]
  2. Chatterjee, N. K., Hou, J., Dockstader, P. & Charbonneau, T. ( 1992; ). Coxsackievirus B4 infection alters thymic, splenic, and peripheral lymphocyte repertoire preceeding onset of hyperglycemia in mice. J Med Virol 38, 124–131.[CrossRef]
    [Google Scholar]
  3. Cuervo, N. S., Guillot, S., Romanenkova, N., Combiescu, M., Aubert-Combiescu, A., Seghier, M., Caro, V., Crainic, R. & Delpeyroux, F. ( 2001; ). Genomic features of intertypic recombinant Sabin poliovirus strains excreted by primary vaccinees. J Virol 75, 5740–5751.[CrossRef]
    [Google Scholar]
  4. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  5. Duggal, R. & Wimmer, E. ( 1999; ). Genetic recombination of poliovirus in vitro and in vivo: temperature-dependent alteration of crossover sites. Virology 258, 30–41.[CrossRef]
    [Google Scholar]
  6. Duggal, R., Cuconati, A., Gromeier, M. & Wimmer, E. ( 1997; ). Genetic recombination of poliovirus in a cell-free system. Proc Natl Acad Sci U S A 94, 13786–13791.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 2001; ). phylip: phylogenetic inference package, 3.6a2 edn. Department of Genetics, University of Washington, Seattle, WA, USA.
  9. Furione, M., Guillot, S., Otelea, D., Balant, J., Candrea, A. & Crainic, R. ( 1996; ). Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology 196, 199–208.
    [Google Scholar]
  10. Georgescu, M.-M., Delpeyroux, F. & Crainic, R. ( 1995; ). Tripartite genome organization of a natural type 2 vaccine/nonvaccine recombinant poliovirus. J Gen Virol 76, 2343–2348.[CrossRef]
    [Google Scholar]
  11. Guillot, S., Caro, V., Cuervo, N., Korotkova, E., Combiescu, M., Persu, A., Aubert-Combiescu, A., Delpeyroux, F. & Crainic, R. ( 2000; ). Natural genetic exchange between vaccine and wild poliovirus strains in humans. J Virol 74, 8434–8443.[CrossRef]
    [Google Scholar]
  12. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 21, 160–174.
    [Google Scholar]
  13. Hillis, D. M. & Bull, J. J. ( 1993; ). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42, 182–192.[CrossRef]
    [Google Scholar]
  14. Hirst, G. K. ( 1962; ). Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harbor Symp Quant Biol 27, 303–309.[CrossRef]
    [Google Scholar]
  15. Hyypiä, T., Hovi, T., Knowles, N. J. & Stanway, G. ( 1997; ). Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78, 1–11.
    [Google Scholar]
  16. Jarvis, T. C. & Kirkegaard, K. ( 1992; ). Poliovirus RNA recombination: mechanistic studies in the absence of selection. EMBO J 11, 3135–3145.
    [Google Scholar]
  17. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  18. Kang, Y., Chatterjee, N. K., Nodwell, M. J. & Yoon, J.-W. ( 1994; ). Complete nucleotide sequence of a strain of coxsackievirus B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JVB strain. J Med Virol 44, 353–361.[CrossRef]
    [Google Scholar]
  19. King, A. M. Q., Brown, F., Christian, P. & 8 other authors ( 2000; ). Picornaviridae. In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses, pp. 657–678. Edited by M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle & R. B. Wickner. San Diego: Academic Press.
  20. Kirkegaard, K. & Baltimore, D. ( 1986; ). The mechanism of RNA recombination in poliovirus. Cell 47, 433–443.[CrossRef]
    [Google Scholar]
  21. Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M. & Paabo, S. ( 1997; ). Neanderthal DNA sequences and the origin of modern humans. Cell 90, 19–30.[CrossRef]
    [Google Scholar]
  22. Lake, J. A. ( 1994; ). Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci U S A 91, 1455–1459.[CrossRef]
    [Google Scholar]
  23. Ledinko, N. ( 1963; ). Genetic recombination with poliovirus type 1. Virology 20, 107–119.[CrossRef]
    [Google Scholar]
  24. Lemey, P., Salemi, M., Bassit, L. & Vandamme, A. M. ( 2002; ). Phylogenetic classification of TT virus groups based on the N22 region is unreliable. Virus Res 85, 47–59.[CrossRef]
    [Google Scholar]
  25. Lindberg, A. M. & Polacek, C. ( 2000; ). Molecular analysis of the prototype coxsackievirus B5 genome. Arch Virol 145, 205–221.[CrossRef]
    [Google Scholar]
  26. Lindberg, A. M., Polacek, C. & Johansson, S. ( 1997; ). Amplification and cloning of complete enterovirus genomes by long distance PCR. J Virol Methods 65, 191–199.[CrossRef]
    [Google Scholar]
  27. Lindberg, A. M., Johansson, S. & Andersson, A. ( 1999; ). Echovirus 5: infectious transcripts and complete nucleotide sequence from uncloned cDNA. Virus Res 59, 75–87.[CrossRef]
    [Google Scholar]
  28. Lockhart, P. J., Steel, M. A., Hendy, M. D. & Penny, D. ( 1994; ). Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11, 605–612.
    [Google Scholar]
  29. Lole, K. S., Bollinger, R. C., Paranjpe, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in india, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  30. Melnick, J. L. ( 1996; ). Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology, 3rd edn, pp. 655–712. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia: Lippincott–Raven.
  31. Mulders, M. N., Salminen, M., Kalkkinen, N. & Hovi, T. ( 2000; ). Molecular epidemiology of coxsackievirus B4 and disclosure of the correct VP1/2Apro cleavage site: evidence for high genomic diversity and long-term endemicity of distinct genotypes. J Gen Virol 81, 803–812.
    [Google Scholar]
  32. Oberste, M. S., Maher, K., Kilpatrick, D. R., Flemister, M. R., Brown, B. A. & Pallansch, M. A. ( 1999a; ). Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37, 1288–1293.
    [Google Scholar]
  33. Oberste, M. S., Maher, K., Kennett, M. L., Campbell, J. J., Carpenter, M. S., Schnurr, D. & Pallansch, M. A. ( 1999b; ). Molecular epidemiology and genetic diversity of echovirus type 30 (E30): genotypes correlate with temporal dynamics of E30 isolation. J Clin Microbiol 37, 3928–3933.
    [Google Scholar]
  34. Oberste, M. S., Maher, K., Kilpatrick, D. R. & Pallansch, M. A. ( 1999c; ). Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73, 1941–1948.
    [Google Scholar]
  35. Oberste, M. S., Maher, K., Flemister, M. R., Marchetti, G., Kilpatrick, D. R. & Pallansch, M. A. ( 2000; ). Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38, 1170–1174.
    [Google Scholar]
  36. Oprisan, G., Combiescu, M., Guillot, S., Caro, V., Combiescu, A., Delpeyroux, F. & Crainic, R. ( 2002; ). Natural genetic recombination between co-circulating heterotypic enteroviruses. J Gen Virol 83, 2193–2200.
    [Google Scholar]
  37. Polacek, C., Lundgren, A., Andersson, A. & Lindberg, A. M. ( 1999; ). Genomic and phylogenetic characterization of coxsackievirus B2 prototype strain Ohio-1. Virus Res 59, 229–238.[CrossRef]
    [Google Scholar]
  38. Posada, D. & Crandall, K. A. ( 1998; ). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  39. Pöyry, T., Kinnunen, L., Hyypiä, T., Brown, B., Horsnell, C., Hovi, T. & Stanway, G. ( 1996; ). Genetic and phylogenetic clustering of enteroviruses. J Gen Virol 77, 1699–1717.[CrossRef]
    [Google Scholar]
  40. Rodriguez, F., Oliver, J. L., Marin, A. & Medina, J. R. ( 1990; ). The general stochastic model of nucleotide substitution. J Theor Biol 142, 485–501.[CrossRef]
    [Google Scholar]
  41. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  42. Sala, M. & Wain-Hobson, S. ( 1999; ). Drift and conservatism in RNA virus evolution: are they adapting or merely changing? In Origin And Evolution Of Viruses, pp. 115–140. Edited by E. Domingo, R. Webster & J. Holland. San Diego: Academic Press.
  43. Sala, M. & Wain-Hobson, S. ( 2000; ). Are RNA viruses adapting or merely changing? J Mol Evol 51, 12–20.
    [Google Scholar]
  44. Santti, J., Hyypiä, T., Kinnunen, L. & Salminen, M. ( 1999; ). Evidence of recombination among enteroviruses. J Virol 73, 8741–8749.
    [Google Scholar]
  45. Santti, J., Harvala, H., Kinnunen, L. & Hyypiä, T. ( 2000; ). Molecular epidemiology and evolution of coxsackievirus A9. J Gen Virol 81, 1361–1372.
    [Google Scholar]
  46. Savolainen, C., Hovi, T. & Mulders, M. N. ( 2001; ). Molecular epidemiology of echovirus 30 in Europe: succession of dominant sublineages within a single major genotype. Arch Virol 146, 521–537.[CrossRef]
    [Google Scholar]
  47. Steel, M. A. ( 1994; ). Recovering a tree from the leaf colorations it generates under a Markov model. Appl Math Lett 7, 19–24.
    [Google Scholar]
  48. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  49. Strimmer, K. & von Haeseler, A. ( 1997; ). Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 94, 6815–6819.[CrossRef]
    [Google Scholar]
  50. Swofford, D. L. ( 2000; ). paup*: phylogenetic analysis using parsimony (*and other methods), 4th edn. Sinauer Associates, Sunderland, MA, USA.
  51. Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. ( 1996; ). Phylogenetic inference. In Molecular Systematics, 2nd edn, pp. 407–514. Edited by D. M. Hillis, C. Moritz & B. K. Mable. Sinauer Associates, Sunderland, MA, USA.
  52. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control regions of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  53. Tang, R. S., Barton, D. J., Flanegan, J. B. & Kirkegaard, K. ( 1997; ). Poliovirus RNA recombination in cell-free extracts. RNA 3, 624–633.
    [Google Scholar]
  54. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  55. Worobey, M. & Holmes, E. C. ( 2001; ). Homologous recombination in GB virus C/hepatitis G virus. Mol Biol Evol 18, 254–261.[CrossRef]
    [Google Scholar]
  56. Worobey, M., Rambaut, A. & Holmes, E. C. ( 1999; ). Widespread intra-serotype recombination in natural populations of dengue virus. Proc Natl Acad Sci U S A 96, 7352–7357.[CrossRef]
    [Google Scholar]
  57. Xia, X. & Xie, Z. ( 2001; ). dambe: software package for data analysis in molecular biology and evolution. J Hered 92, 371–373.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18971-0
Loading
/content/journal/jgv/10.1099/vir.0.18971-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error