Vaccinia virus transcription Free

Abstract

Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18942-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/9/vir842293.html?itemId=/content/journal/jgv/10.1099/vir.0.18942-0&mimeType=html&fmt=ahah

References

  1. Abu-Daya A., Brown P. M., Fox K. R. 1995; DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Res 23:3385–3392
    [Google Scholar]
  2. Ahn B.-Y., Moss B. 1992; RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. Proc Natl Acad Sci U S A 89:3536–3540
    [Google Scholar]
  3. Ahn B.-Y., Gershon P. D., Jones E. V., Moss B. 1990; Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription factor. Mol Cell Biol 10:5433–5441
    [Google Scholar]
  4. Ahn B.-Y., Rosel J., Cole N. B., Moss B. 1992; Identification and expression of rpo19, a vaccinia virus gene encoding a 19-kiloDalton DNA-dependent RNA polymerase subunit. J Virol 66:971–982
    [Google Scholar]
  5. Ahn B.-Y., Gershon P. D., Moss B. 1994; RNA polymerase-associated protein RAP94 confers promoter specificity for initiating transcription of vaccinia virus early stage genes. J Biol Chem 269:7552–7557
    [Google Scholar]
  6. Amegadzie B. Y., Cole N. B., Ahn B.-Y., Moss B. 1991a; Identification, sequence, and expression of the gene encoding a M r 35,000 subunit of the vaccinia virus DNA-dependent RNA polymerase. J Biol Chem 266:13712–13718
    [Google Scholar]
  7. Amegadzie B. Y., Holmes M. H., Cole N. B., Jones E. V., Earl P. L., Moss B. 1991b; Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. Virology 180:88–98
    [Google Scholar]
  8. Amegadzie B. Y., Ahn B.-Y., Moss B. 1992a; Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase-II. J Virol 66:3003–3010
    [Google Scholar]
  9. Amegadzie B. Y., Sisler J. R., Moss B. 1992b; Frame-shift mutations within the vaccinia virus A-type inclusion protein gene. Virology 186:777–782
    [Google Scholar]
  10. Antczak J. B., Patel D. D., Ray C. A., Ink B. S., Pickup D. J. 1992; Site-specific RNA cleavage generates the 3′ end of a poxvirus late mRNA. Proc Natl Acad Sci U S A 89:12033–12037
    [Google Scholar]
  11. Baldick C. J. Jr, Keck J. G., Moss B. 1992; Mutational analysis of the core, spacer, and initiator regions of vaccinia virus intermediate-class promoters. J Virol 66:4710–4719
    [Google Scholar]
  12. Banham A. H., Smith G. L. 1992; Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology 191:803–812
    [Google Scholar]
  13. Beaud G., Beaud R., Leader D. P. 1995; Vaccinia virus gene H5R encodes a protein that is phosphorylated by the multisubunit vaccinia virus B1R protein kinase. J Virol 69:1819–1826
    [Google Scholar]
  14. Bertholet C., Van Meir E., ten Heggeler-Bordier B., Wittek R. 1987; Vaccinia virus produces late mRNAs by discontinuous synthesis. Cell 50:153–162
    [Google Scholar]
  15. Black E. P., Condit R. C. 1996; Phenotypic characterization of mutants in vaccinia virus gene G2R, a putative transcription elongation factor. J Virol 70:47–54
    [Google Scholar]
  16. Black E. P., Moussatche N., Condit R. C. 1998; Characterization of the interactions among vaccinia virus transcription factors G2R, A18R, and H5R. Virology 245:313–322
    [Google Scholar]
  17. Broyles S. S. 1991; A role for ATP hydrolysis in vaccinia virus early gene transcription: dissociation of the early transcription factor–promoter complex. J Biol Chem 266:15545–15548
    [Google Scholar]
  18. Broyles S. S. 1993; Vaccinia virus encodes a functional dUTPase. Virology 195:863–865
    [Google Scholar]
  19. Broyles S. S., Moss B. 1986; Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. Proc Natl Acad Sci U S A 83:3141–3145
    [Google Scholar]
  20. Broyles S. S., Moss B. 1987; Sedimentation of an RNA polymerase complex from vaccinia virus that specifically initiates and terminates transcription. Mol Cell Biol 7:7–14
    [Google Scholar]
  21. Broyles S. S., Moss B. 1988; DNA-dependent ATPase activity associated with vaccinia virus early transcription factor. J Biol Chem 263:10761–10765
    [Google Scholar]
  22. Broyles S. S., Fesler B. S. 1990; Vaccinia virus gene encoding a component of the viral early transcription factor. J Virol 64:1523–1529
    [Google Scholar]
  23. Broyles S. S., Pennington M. J. 1990; Vaccinia virus gene encoding a 30-kilodalton subunit of the viral DNA-dependent RNA polymerase. J Virol 64:5376–5382
    [Google Scholar]
  24. Broyles S. S., Yuen L., Shuman S., Moss B. 1988; Purification of a factor required for transcription of vaccinia virus early genes. J Biol Chem 263:10754–10760
    [Google Scholar]
  25. Broyles S. S., Li J., Moss B. 1991; Promoter DNA contacts made by the vaccinia virus early transcription factor. J Biol Chem 263:15539–15544
    [Google Scholar]
  26. Broyles S. S., Liu X., Zhu M., Kremer M. 1999; Transcription factor YY1 is a vaccinia virus late promoter activator. J Biol Chem 274:35662–35667
    [Google Scholar]
  27. Cassetti M. A., Moss B. 1996; Interaction of the 82-kDa subunit of the vaccinia virus early transcription factor heterodimer with the promoter core sequence directs downstream DNA binding of the 70-kDa subunit. Proc Natl Acad Sci U S A 93:7540–7545
    [Google Scholar]
  28. Cassetti M. C., Merchlinsky M., Wolffe E. J., Weisberg A. S., Moss B. 1998; DNA packaging mutant: repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J Virol 72:5769–5780
    [Google Scholar]
  29. Christen L. M., Sanders M., Wiler C., Niles E. G. 1998; Vaccinia virus nucleoside triphosphate phosphohydrolase I is an essential viral early gene transcription termination factor. Virology 245:360–371
    [Google Scholar]
  30. Conaway J. W., Conaway R. C. 1999; Transcription elongation and human disease. Annu Rev Biochem 68:301–319
    [Google Scholar]
  31. Condit R. C., Motyczka A. 1981; Isolation and preliminary characterization of temperature-sensitive mutants of vaccinia virus. Virology 113:224–241
    [Google Scholar]
  32. Condit R. C., Niles E. G. 2002; Regulation of viral transcription elongation and termination during vaccinia virus infection. Biochim Biophys Acta 1577:325–326
    [Google Scholar]
  33. Condit R. C., Motyczka A., Spizz G. 1983; Isolation, characterization, and physical mapping of temperature-sensitive mutants of vaccinia virus. Virology 128:429–443
    [Google Scholar]
  34. Condit R. C., Xiang Y., Lewis J. I. 1996; Mutation of vaccinia virus gene G2R causes suppression of gene A18R ts mutants: implications for control of transcription. Virology 220:10–19
    [Google Scholar]
  35. Davis J. A., Takagi Y., Kornberg R. D., Asturias F. A. 2002; Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol Cell 10:409–415
    [Google Scholar]
  36. Davison A. J., Moss B. 1989a; Structure of vaccinia virus late promoters. J Mol Biol 210:771–784
    [Google Scholar]
  37. Davison A. J., Moss B. 1989b; Structure of vaccinia virus early promoters. J Mol Biol 210:749–769
    [Google Scholar]
  38. Deng L., Shuman S. 1994; A role for the H4 subunit of vaccinia RNA polymerase in transcription initiation at a viral early promoter. J Biol Chem 269:14323–14328
    [Google Scholar]
  39. Deng L., Shuman S. 1997; Elongation properties of vaccinia virus RNA polymerase: pausing, slippage, 3′ end addition, and termination site choice. Biochemistry 36:15892–15899
    [Google Scholar]
  40. Deng L., Shuman S. 1998; Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev 12:538–546
    [Google Scholar]
  41. Garces J., Masternak K., Kunz B., Wittek R. 1993; Reactivation of transcription from a vaccinia virus early promoter late in infection. J Virol 67:5394–5401
    [Google Scholar]
  42. Gershon P. D., Moss B. 1990; Early transcription factor subunits are encoded by vaccinia virus late genes. Proc Natl Acad Sci U S A 87:4401–4405
    [Google Scholar]
  43. Gershon P. D., Ahn B.-Y., Garfield M., Moss B. 1991; Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. Cell 66:1269–1278
    [Google Scholar]
  44. Gershowitz A., Boone R. F., Moss B. 1978; Multiple roles for ATP in the synthesis and processing of mRNA by vaccinia virus: specific inhibitory effects of adenosine ( β , γ -imido)triphosphate. J Virol 27:399–408
    [Google Scholar]
  45. Gnatt A. 2002; Elongation by RNA polymerase II: structure-function relationship. Biochim Biophys Acta 1577:175–190
    [Google Scholar]
  46. Gunasinghe S. K., Hubbs A. E., Wright C. E. 1998; A vaccinia virus late transcription factor with biochemical and molecular identity to a human cellular protein. J Biol Chem 273:27524–27530
    [Google Scholar]
  47. Hagler J., Shuman S. 1992; Structural analysis of ternary complexes of vaccinia RNA polymerase. Proc Natl Acad Sci U S A 89:10099–10103
    [Google Scholar]
  48. Harris N., Rosales R., Moss B. 1993; Transcription initiation factor activity of vaccinia virus capping enzyme is independent of mRNA guanylylation. Proc Natl Acad Sci U S A 90:2860–2864
    [Google Scholar]
  49. Hooda-Dhingra U., Thompson C. L., Condit R. C. 1989; Detailed phenotypic characterization of five temperature-sensitive mutants in the 22- and 147-kilodalton subunits of vaccinia virus DNA-dependent RNA polymerase. J Virol 63:714–729
    [Google Scholar]
  50. Houbaviy H. B., Usheva A., Shenk T., Burley S. K. 1996; Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. Proc Natl Acad Sci U S A 93:13577–13582
    [Google Scholar]
  51. Howard S. T., Ray C. A., Patel D. D., Antczak J. B., Pickup D. J. 1999; A 43-nucleotide RNA cis -acting element governs the site-specific formation of the 3′ end of a poxvirus late mRNA. Virology 255:190–204
    [Google Scholar]
  52. Hruby D. E., Ball L. A. 1982; Mapping and identification of the vaccinia virus thymidine kinase gene. J Virol 43:403–409
    [Google Scholar]
  53. Hu X., Carroll L. J., Wolffe E. J., Moss B. 1996; De novo synthesis of the early transcription factor 70-kilodalton subunit is required for morphogenesis of vaccinia virions. J Virol 70:7669–7677
    [Google Scholar]
  54. Hu X., Wolffe E. J., Weisberg A. S., Carroll L. J., Moss B. 1998; Repression of the A8L gene, encoding the early transcription factor 82-kilodalton subunit, inhibits morphogenesis of vaccinia virions. J Virol 72:104–112
    [Google Scholar]
  55. Jones E. V., Moss B. 1984; Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA. J Virol 49:72–77
    [Google Scholar]
  56. Jones E. V., Puckett C., Moss B. 1987; DNA-dependent RNA polymerase subunits encoded within the vaccinia virus genome. J Virol 61:1765–1771
    [Google Scholar]
  57. Kates J. R., McAuslan B. R. 1967; Poxvirus DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 58:134–141
    [Google Scholar]
  58. Keck J. G., Baldick C. J. Jr, Moss B. 1990; Role of DNA replication in vaccinia virus gene expression: a naked template is required for transcription of three late trans -activator genes. Cell 61:801–809
    [Google Scholar]
  59. Kotwal G. J., Hugin A. W., Moss B. 1989; Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology 171:579–587
    [Google Scholar]
  60. Kovacs G. R., Moss B. 1996; The vaccinia virus H5R gene encodes late gene transcription factor 4: purification, cloning, and overexpression. J Virol 70:6796–6802
    [Google Scholar]
  61. Kovacs G. R., Rosales R., Keck J. G., Moss B. 1994; Modification of the cascade model for regulation of vaccinia virus gene expression: purification of a prereplicative, late-stage-specific transcription factor. J Virol 68:3443–3447
    [Google Scholar]
  62. Kovacs G. R., Vasilakis N., Moss B. 2001; Regulation of viral intermediate gene expression by the vaccinia virus B1 protein kinase. J Virol 75:4048–4055
    [Google Scholar]
  63. Kumar S., Boyle D. B. 1990; Activity of a fowlpox virus late gene promoter in vaccinia and fowlpox virus recombinants. Arch Virol 112:139–148
    [Google Scholar]
  64. Lackner C. A., Condit R. C. 2000; Vaccinia virus gene A18R DNA helicase is a transcript release factor. J Biol Chem 275:1485–1494
    [Google Scholar]
  65. Latner D. R., Xiang Y., Lewis J. I., Condit J., Condit R. C. 2000; The vaccinia virus bifunctional gene J3 (nucleoside-2′- O -)-methyltransferase and poly(A) polymerase stimulatory factor is implicated as a positive transcription elongation factor by two genetic approaches. Virology 269:345–355
    [Google Scholar]
  66. Latner D. R., Thompson J. M., Gershon P. D., Storrs C., Condit R. C. 2002; The positive transcription elongation factor activity of the vaccinia virus J3 protein is independent from its (nucleoside-2′- O -) methyltransferase and poly(A) polymerase stimulatory functions. Virology 301:64–80
    [Google Scholar]
  67. Lee-Chen G.-J., Niles E. G. 1988; Transcription and translation mapping of the 13 genes in the vaccinia virus Hin dIII D fragment. Virology 163:52–63
    [Google Scholar]
  68. Li J., Broyles S. S. 1993; Recruitment of vaccinia virus RNA polymerase to an early gene promoter by the viral early transcription factor. J Biol Chem 268:2773–2780
    [Google Scholar]
  69. Li J., Broyles S. S. 1995; The DNA binding domain of the vaccinia virus early gene transcription factor small subunit is an extended helicase-like motif. Nucleic Acids Res 23:1590–1596
    [Google Scholar]
  70. Li J., Pennington M. J., Broyles S. S. 1994; Temperature-sensitive mutations in the gene encoding the small subunit of the vaccinia virus early transcription factor impair promoter binding, transcription activation, and packaging of multiple virion components. J Virol 68:2605–2614
    [Google Scholar]
  71. Lin S., Chen W., Broyles S. S. 1992; The vaccinia virus B1R gene product is a serine/threonine protein kinase. J Virol 66:2717–2723
    [Google Scholar]
  72. McCraith S., Holtzman T., Moss B., Fields S. 2000; Genome-wide analysis of vaccinia virus protein–protein interactions. Proc Natl Acad Sci U S A 97:4879–4984
    [Google Scholar]
  73. Meis R. J., Condit R. C. 1991; Genetic and molecular biological characterization of a vaccinia virus gene which renders the virus dependent on isatin-beta-thiosemicarbazone (IBT). Virology 182:442–454
    [Google Scholar]
  74. Minnigan H., Moyer R. W. 1985; Intracellular location of rabbit poxvirus nucleic acid within infected cells as determined by in situ hybridization. J Virol 55:634–643
    [Google Scholar]
  75. Mohamed M. R., Niles E. G. 2000; Interaction between nucleoside triphosphate phosphohydrolase I and the H4L subunit of the viral RNA polymerase is required for vaccinia virus early gene transcript release. J Biol Chem 275:25798–25804
    [Google Scholar]
  76. Mohamed M. R., Niles E. G. 2001; The viral RNA polymerase H4L subunit is required for vaccinia virus early gene transcription termination. J Biol Chem 276:20758–20765
    [Google Scholar]
  77. Moore J. B., Smith G. L. 1992; Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J 11:1973–1980
    [Google Scholar]
  78. Morgan J. R., Cohen L. K., Roberts B. E. 1984; Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. J Virol 52:206–214
    [Google Scholar]
  79. Moss B. 1994; Vaccinia virus transcription. In Transcription Mechanisms and Regulation pp  185–205 Edited by Conaway R. C., Conaway J. W. New York: Raven Press;
    [Google Scholar]
  80. Moss B. 2001; Poxviridae : the viruses and their replication. In Fields Virology pp  2849–2883 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  81. Munyon W. E., Paoletti E., Grace J. J. T. Jr 1967; RNA polymerase activity in purified infectious vaccinia virus. Proc Natl Acad Sci U S A 58:2280–2287
    [Google Scholar]
  82. Murakami K. S., Masuda S., Campbell E. A., Muzzin O., Darst S. A. 2002; Structural basis of transcription initiation: an RNA polymerase holoenzyme–DNA complex. Science 296:1285–1290
    [Google Scholar]
  83. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. J Gen Virol 82:2095–2105
    [Google Scholar]
  84. Niles E. G., Lee-Chen G.-J., Shuman S., Moss B., Broyles S. S. 1989; Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology 172:513–522
    [Google Scholar]
  85. Oda K. I., Joklik W. K. 1967; Hybridization and sedimentation studies on ‘early’ and ‘late’ vaccinia messenger RNA. J Mol Biol 27:395–419
    [Google Scholar]
  86. Patel D. D., Pickup D. J. 1989; The second-largest subunit of the poxvirus RNA polymerase is similar to the corresponding subunits of procaryotic and eucaryotic RNA polymerases. J Virol 63:1076–1086
    [Google Scholar]
  87. Quick S. D., Broyles S. S. 1990; Vaccinia virus gene D7R encodes a 20,000-dalton subunit of the viral DNA-dependent RNA polymerase. Virology 178:603–605
    [Google Scholar]
  88. Rosales R., Harris N., Ahn B.-Y., Moss B. 1994a; Purification and identification of a vaccinia virus-encoded intermediate stage promoter-specific transcription factor that has homology to eukaryotic transcription factor SII (TFIIS) and an additional role as a viral RNA polymerase subunit. J Biol Chem 269:14260–14267
    [Google Scholar]
  89. Rosales R., Sutter G., Moss B. 1994b; A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. Proc Natl Acad Sci U S A 91:3794–3798
    [Google Scholar]
  90. Rosel J., Moss B. 1985; Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. J Virol 56:830–838
    [Google Scholar]
  91. Rosel J., Earl P. L., Weir J. P., Moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hin dIII H genome fragment. J Virol 60:436–449
    [Google Scholar]
  92. Sanz P., Moss B. 1998; A new vaccinia virus intermediate transcription factor. J Virol 72:6880–6883
    [Google Scholar]
  93. Sanz P., Moss B. 1999; Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. Proc Natl Acad Sci U S A 96:2692–2697
    [Google Scholar]
  94. Schnierle B. S., Gershon P. D., Moss B. 1992; Cap-specific mRNA (nucleoside- O 2′-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc Natl Acad Sci U S A 89:2897–2901
    [Google Scholar]
  95. Schwer B., Visca P., Vos J. C., Stunnenberg H. G. 1987; Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell 50:163–169
    [Google Scholar]
  96. Shuman S., Moss B. 1988; Bromouridine triphosphate inhibits transcription termination and mRNA release by vaccinia virions. J Biol Chem 264:21356–21360
    [Google Scholar]
  97. Simpson D. A., Condit R. C. 1995; Vaccinia virus gene A18R encodes an essential DNA helicase. J Virol 69:6131–6139
    [Google Scholar]
  98. Smith G. L., Chan Y. S., Kerr S. M. 1989a; Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. Nucleic Acids Res 17:9051–9062
    [Google Scholar]
  99. Smith G. L., de Carlos A., Chan Y. S. 1989b; Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping. Nucleic Acids Res 17:7581–7590
    [Google Scholar]
  100. Traktman P., Anderson M. K., Rempel R. E. 1989; Vaccinia virus encodes an essential gene with strong homology to protein kinases. J Biol Chem 264:21458–21461
    [Google Scholar]
  101. Tripathy D. N., Wittek R. 1990; Regulation of foreign gene in fowlpox virus by a vaccinia virus promoter. Avian Dis 34:218–220
    [Google Scholar]
  102. Uptain S. M., Kane C. M., Chamberlin M. J. 1997; Basic mechanisms of transcript elongation and its regulation. Annu Rev Biochem 66:117–172
    [Google Scholar]
  103. Vos J. C., Stunnenberg H. G. 1988; Derepression of a novel class of vaccinia virus genes upon DNA replication. EMBO J 7:3487–3492
    [Google Scholar]
  104. Vos J. C., Sasker M., Stunnenberg H. G. 1991a; Vaccinia virus capping enzyme is a transcription initiation factor. EMBO J 10:2553–2558
    [Google Scholar]
  105. Vos J. C., Sasker M., Stunnenberg H. G. 1991b; Promoter melting by a stage-specific vaccinia virus transcription factor is independent of the presence of RNA polymerase. Cell 65:105–113
    [Google Scholar]
  106. Wittek R., Cooper J. A., Barbosa E., Moss B. 1980; Expression of the vaccinia virus genome: analysis and mapping of mRNAs encoded within the inverted terminal repetition. Cell 21:487–493
    [Google Scholar]
  107. Wright C. F., Coroneos A. M. 1993; Purification of the late transcription system of vaccinia virus: identification of a novel transcription factor. J Virol 67:7264–7270
    [Google Scholar]
  108. Wright C. F., Coroneos A. M. 1995; The H4 subunit of vaccinia virus RNA polymerase is not required for transcription initiation at a viral late promoter. J Virol 69:2602–2604
    [Google Scholar]
  109. Wright C. F., Hubbs A. E., Gunasinghe S. K., Oswald B. W. 1998; A vaccinia virus late transcription factor copurifies with a factor that binds to a viral late promoter and is complemented by extracts from uninfected HeLa cells. J Virol 72:1446–1451
    [Google Scholar]
  110. Wright C. F., Oswald B. W., Dellis S. 2001; Vaccinia virus late transcription is activated in vitro by cellular heterogeneous nuclear ribonucleoproteins. J Biol Chem 276:40680–40686
    [Google Scholar]
  111. Xiang Y., Simpson D. A., Spiegel J., Zhou A., Silverman R. H., Condit R. C. 1998; The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. J Virol 72:7012–7023
    [Google Scholar]
  112. Xiang Y., Latner D. R., Niles E. G., Condit R. C. 2000; Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 269:356–369
    [Google Scholar]
  113. Yuen L., Moss B. 1987; Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proc Natl Acad Sci U S A 84:6417–6421
    [Google Scholar]
  114. Zhang Y., Ahn B.-Y., Moss B. 1993; Targeting of a multicomponent transcription apparatus into assembling vaccinia virus particles requires RAP94, an RNA polymerase-associated protein. J Virol 68:1360–1370
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18942-0
Loading
/content/journal/jgv/10.1099/vir.0.18942-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed