1887

Abstract

Many plant virus genera encode a ‘triple gene block’ (TGB), a specialized evolutionarily conserved gene module involved in the cell-to-cell and long-distance movement of viruses. The TGB-based transport system exploits the co-ordinated action of three polypeptides to deliver viral genomes to plasmodesmata and to accomplish virus entry into neighbouring cells. Although data obtained on both the TGB and well-studied single protein transport systems clearly demonstrate that plant viruses employ host cell pathways for intra- and intercellular trafficking of genomic nucleic acids and proteins, there is no integral picture of the details of molecular events during TGB-mediated virus movement. Undoubtedly, understanding the molecular basis of the concerted action of TGB-encoded proteins in transporting viral genomes from cell to cell should provide new insights into the general principles of movement protein function. This review describes the structure, phylogeny and expression of TGB proteins, their roles in virus cell-to-cell movement and potential influence on host antiviral defences.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18922-0
2003-06-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841351.html?itemId=/content/journal/jgv/10.1099/vir.0.18922-0&mimeType=html&fmt=ahah

References

  1. Agranovsky, A. A. & Morozov, S. Yu. ( 1999; ). Gene expression in positive strand RNA viruses: conventional and aberrant strategies. In Molecular Biology of Plant Viruses, pp. 99–119. Edited by C. L. Mandahar. Boston/Dordrecht/London: Kluwer.
  2. Agranovsky, A. A., Boyko, V. P., Karasev, A. V., Koonin, E. V. & Dolja, V. V. ( 1991; ). Putative 65 kDa protein of beet yellows closterovirus is a homologue of HSP70 heat shock proteins. J Mol Biol 217, 603–610.[CrossRef]
    [Google Scholar]
  3. Agranovsky, A. A., Folimonova, S. Yu., Folimonov, A. S., Denisenko, O. N. & Zinovkin, R. A. ( 1997; ). The beet yellows closterovirus p65 homologue of HSP70 chaperones has ATPase activity associated with its conserved N-terminal domain but does not interact with unfolded protein chains. J Gen Virol 78, 535–542.
    [Google Scholar]
  4. Agranovsky, A. A., Folimonov, A. S., Folimonova, S. Yu., Morozov, S. Yu., Schiemann, J., Lesemann, D. & Atabekov, J. G. ( 1998; ). Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J Gen Virol 79, 889–895.
    [Google Scholar]
  5. Allison, A. V. & Shalla, T. A. ( 1974; ). The ultrastructure of local lesions induced by potato virus X: a sequence of cytological events in the course of infection. Phytopathology 64, 784–793.[CrossRef]
    [Google Scholar]
  6. Alzhanova, D. V., Hagiwara, Y., Peremyslov, V. V. & Dolja, V. V. ( 2000; ). Genetic analysis of the cell-to-cell movement of beet yellows closterovirus. Virology 268, 192–200.[CrossRef]
    [Google Scholar]
  7. Alzhanova, D. V., Napuli, A. J., Creamer, R. & Dolja, V. V. ( 2001; ). Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20, 6997–7007.[CrossRef]
    [Google Scholar]
  8. Angell, S. M., Davies, C. & Baulcombe, D. C. ( 1996; ). Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216, 197–201.[CrossRef]
    [Google Scholar]
  9. Aoki, K., Kragler, F., Xoconostle-Cázares, B. & Lucas, W. J. ( 2002; ). A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci U S A 99, 16342–16347.[CrossRef]
    [Google Scholar]
  10. Atabekov, J. G. & Dorokhov, Yu. L. ( 1984; ). Plant virus-specific transport function and resistance of plants to viruses. Adv Virus Res 29, 313–364.
    [Google Scholar]
  11. Atabekov, J. G. & Taliansky, M. E. ( 1990; ). Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res 38, 201–248.
    [Google Scholar]
  12. Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V. & Poljakov, V. Y. ( 2000; ). The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271, 259–263.[CrossRef]
    [Google Scholar]
  13. Baulcombe, D. ( 2002; ). Viral suppression of systemic silencing. Trends Microbiol 10, 306–308.[CrossRef]
    [Google Scholar]
  14. Beck, D. L., Guilford, P. J., Voot, D. M., Andersen, M. T. & Forster, R. L. ( 1991; ). Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183, 695–702.[CrossRef]
    [Google Scholar]
  15. Beck, D. L., Van Dolleweerd, C. J., Lough, T. J., Balmori, E., Voot, D. M., Andersen, M. T., O'Brien, I. E. & Forster, R. L. ( 1994; ). Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. Proc Natl Acad Sci U S A 91, 10310–10314.[CrossRef]
    [Google Scholar]
  16. Blackman, L. M. & Overall, R. L. ( 2001; ). Structure and function of plasmodesmata. Austr J Plant Physiol 28, 709–727.
    [Google Scholar]
  17. Bleykasten, C., Gilmer, D., Guilley, H., Richards, K. E. & Jonard, G. ( 1996; ). Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro. J Gen Virol 77, 889–897.[CrossRef]
    [Google Scholar]
  18. Bleykasten-Grosshans, C., Guilley, H., Bouzoubaa, S., Richards, K. E. & Jonard, G. ( 1997; ). Independent expression of the first two triple gene block proteins of beet necrotic yellow vein virus complements virus defective in the corresponding gene but expression of the third protein inhibits viral cell-to-cell movement. Mol Plant–Microbe Interact 10, 240–246.[CrossRef]
    [Google Scholar]
  19. Bouzoubaa, S., Ziegler, V., Beck, D., Guilley, H., Richards, K. & Jonard, G. ( 1986; ). Nucleotide sequence of beet necrotic yellow vein virus RNA-2. J Gen Virol 67, 1689–1700.[CrossRef]
    [Google Scholar]
  20. Brakke, M. K., Ball, E. M. & Langenberg, W. G. ( 1988; ). A non-capsid protein associated with unencapsidated virus RNA in barley infected with barley stripe mosaic virus. J Gen Virol 69, 481–491.[CrossRef]
    [Google Scholar]
  21. Brandizzi, F., Fricker, M. & Hawes, C. ( 2002a; ). A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol 3, 520–530.[CrossRef]
    [Google Scholar]
  22. Brandizzi, F., Snapp, E. L., Roberts, A. G., Lippincott-Schwartz, J. & Hawes, C. ( 2002b; ). Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14, 1293–1309.[CrossRef]
    [Google Scholar]
  23. Bucher, G. L., Tarina, C., Heinlein, M., Di Serio, F., Meins, F., Jr & Iglesias, V. A. ( 2001; ). Local expression of enzymatically active class I β-1,3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28, 361–369.[CrossRef]
    [Google Scholar]
  24. Buck, K. W. ( 1996; ). Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47, 159–251.
    [Google Scholar]
  25. Callaway, A., Giesman-Cookmeyer, D., Gillock, E. T., Sit, T. L. & Lommel, S. A. ( 2001; ). The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39, 419–460.[CrossRef]
    [Google Scholar]
  26. Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. ( 1996; ). Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669–1681.[CrossRef]
    [Google Scholar]
  27. Carrington, J. C., Jensen, P. E. & Schaad, M. C. ( 1998; ). Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14, 393–400.[CrossRef]
    [Google Scholar]
  28. Carrington, J. C., Kasschau, K. D. & Johansen, L. K. ( 2001; ). Activation and suppression of RNA silencing by plant viruses. Virology 281, 1–5.[CrossRef]
    [Google Scholar]
  29. Caruthers, J. M. & McKay, D. B. ( 2002; ). Helicase structure and mechanism. Curr Opin Struct Biol 12, 123–133.[CrossRef]
    [Google Scholar]
  30. Chapman, S., Hills, G., Watts, J. & Baulcombe, D. ( 1992; ). Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191, 223–230.[CrossRef]
    [Google Scholar]
  31. Cheng, W., Brendza, K. M., Gauss, G. H., Korolev, S., Waksman, G. & Lohman, T. M. ( 2002; ). The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proc Natl Acad Sci U S A 99, 16006–16011.[CrossRef]
    [Google Scholar]
  32. Citovsky, V. & Zambryski, P. ( 1993; ). Transport of nucleic acids through membrane channels: snaking through small holes. Annu Rev Microbiol 47, 167–197.[CrossRef]
    [Google Scholar]
  33. Cowan, G. H., Lioliopoulou, F., Ziegler, A. & Torrance, L. ( 2002; ). Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 298, 106–115.[CrossRef]
    [Google Scholar]
  34. Crawford, K. M. & Zambryski, P. C. ( 2000; ). Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10, 1032–1040.[CrossRef]
    [Google Scholar]
  35. Crawford, K. M. & Zambryski, P. C. ( 2001; ). Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125, 1802–1812.[CrossRef]
    [Google Scholar]
  36. Dangl, J. L. & Jones, J. D. G. ( 2001; ). Plant pathogens and integrated defence responses to infection. Nature 411, 826–833.[CrossRef]
    [Google Scholar]
  37. Deom, C. M, Oliver, M. I. & Beachy, R. N. ( 1987; ). The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389–394.[CrossRef]
    [Google Scholar]
  38. Dolja, V. V. ( 2003; ). Beet yellows virus: the importance of being different. Mol Plant Pathol 4, 91–98.[CrossRef]
    [Google Scholar]
  39. Dolja, V. V., Grama, D. P., Morozov, S. Yu. & Atabekov, J. G. ( 1987; ). Potato virus X-related single- and double-stranded RNA. Characterization and identification of terminal structures. FEBS Lett 214, 308–312.[CrossRef]
    [Google Scholar]
  40. Donald, R. G., Zhou, H. & Jackson, A. O. ( 1993; ). Serological analysis of barley stripe mosaic virus-encoded proteins in infected barley. Virology 195, 659–668.[CrossRef]
    [Google Scholar]
  41. Donald, R. G. K., Petty, I. T. D., Zhou, H. & Jackson, A. O. ( 1995; ). Properties of genes influencing barley stripe mosaic virus movement phenotypes. In Fifth International Symposium on Biotechnology and Plant Protection: Viral Pathogenesis and Disease Resistance, pp. 135–147. Singapore: World Scientific.
  42. Donald, R. G., Lawrence, D. M. & Jackson, A. O. ( 1997; ). The barley stripe mosaic virus 58-kilodalton β b protein is a multifunctional RNA binding protein. J Virol 71, 1538–1546.
    [Google Scholar]
  43. Du, M. X., Johnson, R. B., Sun, X. L., Staschke, K. A., Colacino, J. & Wang, Q. M. ( 2002; ). Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase. Biochem J 363, 147–155.[CrossRef]
    [Google Scholar]
  44. Dunoyer, P., Pfeffer, S., Fritsch, C., Hemmer, O., Voinnet, O. & Richards, K. E. ( 2002a; ). Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29, 555–567.[CrossRef]
    [Google Scholar]
  45. Dunoyer, P., Ritzenthaler, C., Hemmer, O., Michler, P. & Fritsch, C. ( 2002b; ). Intracellular localization of the peanut clump replication complex in tobacco BY-2 protoplasts containing green fluorescent protein-labeled endoplasmic reticulum or Golgi apparatus. J Virol 76, 865–874.[CrossRef]
    [Google Scholar]
  46. Ellis, R. J. & Hartl, F. U. ( 1999; ). Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9, 102–110.[CrossRef]
    [Google Scholar]
  47. Erhardt, M., Herzog, E., Lauber, E., Fritsch, C., Guilley, H., Jonard, G., Richards, K. & Bouzoubaa, S. ( 1999a; ). Transgenic plants expressing the TGB1 protein of peanut clump virus complement movement of TGB1-defective peanut clump virus but not of TGB1-defective beet necrotic yellow vein virus. Plant Cell Rep 18, 614–619.[CrossRef]
    [Google Scholar]
  48. Erhardt, M., Stussi-Garaud, C., Guilley, H., Richards, K. E., Jonard, G. & Bouzoubaa, S. ( 1999b; ). The first triple gene block protein of peanut clump virus localizes to the plasmodesmata during virus infection. Virology 264, 220–229.[CrossRef]
    [Google Scholar]
  49. Erhardt, M., Morant, M., Ritzenthaler, C., Stussi-Garaud, C., Guilley, H., Richards, K. E., Jonard, G., Bouzoubaa, S. & Gilmer, D. ( 2000; ). P42 movement protein of beet necrotic yellow vein virus is targeted by the movement proteins p13 and p15 to punctate bodies associated with plasmodesmata. Mol Plant–Microbe Interact 13, 520–528.[CrossRef]
    [Google Scholar]
  50. Fedoroff, N. V. ( 2002; ). RNA-binding proteins in plants: the tip of an iceberg? Curr Opin Plant Biol 5, 452–459.[CrossRef]
    [Google Scholar]
  51. Forster, R. L., Bevan, M. W., Harbison, S. A. & Gardner, R. C. ( 1988; ). The complete nucleotide sequence of the potexvirus white clover mosaic virus. Nucleic Acids Res 16, 291–303.[CrossRef]
    [Google Scholar]
  52. Forster, R. L., Beck, D. L., Guilford, P. J., Voot, D. M., Van Dolleweerd, C. J. & Andersen, M. T. ( 1992; ). The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 191, 480–484.[CrossRef]
    [Google Scholar]
  53. Foster, T. M., Lough, T. J., Emerson, S. J., Lee, R. H., Bowman, J. L., Forster, R. L. S. & Lucas, W. J. ( 2002; ). A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14, 1497–1508.[CrossRef]
    [Google Scholar]
  54. Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K. & Angell, S. ( 2003; ). TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant–Microbe Interact 16, 132–140.[CrossRef]
    [Google Scholar]
  55. Gafvelin, G., Sakaguchi, M., Andersson, H. & von Heijne, G. ( 1997; ). Topological rules for membrane protein assembly for eukaryotic cells. J Biol Chem 272, 6119–6127.[CrossRef]
    [Google Scholar]
  56. Ghoshroy, S., Lartey, R., Sheng, J. & Citovsky, V. ( 1997; ). Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 48, 27–49.[CrossRef]
    [Google Scholar]
  57. Gilmer, D., Bouzoubaa, S., Hehn, A., Guilley, H., Richards, K. & Jonard, G. ( 1992; ). Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3′ proximal genes located on RNA 2. Virology 189, 40–47.[CrossRef]
    [Google Scholar]
  58. Gorbalenya, A. E. & Koonin, E. V. ( 1993; ). Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struct Biol 3, 419–429.[CrossRef]
    [Google Scholar]
  59. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. ( 1989; ). Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17, 4713–4730.[CrossRef]
    [Google Scholar]
  60. Gorshkova, E. N., Erokhina, T. N., Stroganova, T. A., Yelina, N. E., Zamyatnin, A. A., Jr, Kalinina, N. O., Schiemann, J., Solovyev, A. G. & Morozov, S. Yu. ( 2003; ). Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 84, 985–994.[CrossRef]
    [Google Scholar]
  61. Guilford, P. J. & Forster, R. L. S. ( 1986; ). Detection of polyadenylated subgenomic RNAs in leaves infected with daphne virus X. J Gen Virol 67, 83–90.[CrossRef]
    [Google Scholar]
  62. Hacker, D. L., Petty, I. T., Wei, N. & Morris, T. J. ( 1992; ). Turnip crinkle virus genes required for RNA replication and virus movement. Virology 186, 1–8.[CrossRef]
    [Google Scholar]
  63. Haywood, V., Kragler, F. & Lucas, W. J. ( 2002; ). Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14 (Suppl. 1), S303–S325.
    [Google Scholar]
  64. Hefferon, K. L., Doyle, S. & Abouhaidar, M. G. ( 1997; ). Immunological detection of the 8K protein of potato virus X (PVX) in cell walls of PVX-infected tobacco and transgenic potato. Arch Virol 142, 425–433.[CrossRef]
    [Google Scholar]
  65. Heinlein, M. ( 2002a; ). The spread of tobacco mosaic virus infection: insights into the cellular mechanism of RNA transport. Cell Mol Life Sci 59, 58–82.[CrossRef]
    [Google Scholar]
  66. Heinlein, M. ( 2002b; ). Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signaling. Curr Opin Plant Biol 5, 1–10.[CrossRef]
    [Google Scholar]
  67. Herzog, E., Hemmer, O., Hauser, S., Meyer, G., Bouzoubaa, S. & Fritsch, C. ( 1998; ). Identification of genes involved in replication and movement of peanut clump virus. Virology 248, 312–322.[CrossRef]
    [Google Scholar]
  68. Holt, B. F., III, Hubert, D. A. & Dangl, J. L. ( 2003; ). Resistance gene signaling in plants – complex similarities to animal innate immunity. Curr Opin Immunol 15, 20–25.[CrossRef]
    [Google Scholar]
  69. Huisman, M. J., Linthorst, H. J., Bol, J. F. & Cornelissen, J. C. ( 1988; ). The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J Gen Virol 69, 1789–1798.[CrossRef]
    [Google Scholar]
  70. Hull, R. ( 1989; ). The movement of viruses in plant. Annu Rev Phytopathol 27, 213–240.[CrossRef]
    [Google Scholar]
  71. Iglesias, V. A. & Meins, F., Jr ( 2000; ). Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21, 157–166.[CrossRef]
    [Google Scholar]
  72. Itaya, A., Liang, G., Woo, Y.-M., Nelson, R. S. & Ding, B. ( 2000; ). Non-specific intercellular protein trafficking probed by green-fluorescent protein plants. Protoplasma 213, 165–175.[CrossRef]
    [Google Scholar]
  73. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. ( 2001; ). Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125.[CrossRef]
    [Google Scholar]
  74. Jiang, L. & Rogers, J. C. ( 1998; ). Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol 143, 1183–1199.[CrossRef]
    [Google Scholar]
  75. Juuti, J. T., Bamford, D. H., Tuma, R. & Thomas, G. J., Jr ( 1998; ). Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage ϕ6. J Mol Biol 279, 347–359.[CrossRef]
    [Google Scholar]
  76. Kadare, G. & Haenni, A. L. ( 1997; ). Virus-encoded RNA helicases. J Virol 71, 2583–2590.
    [Google Scholar]
  77. Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Maiss, E., Korpela, T., Morozov, S. Yu. & Atabekov, J. G. ( 1996; ). Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett 397, 75–78.[CrossRef]
    [Google Scholar]
  78. Kalinina, N. O., Samuilova, O. V., Fedorkin, O. N., Zelenina, D. A. & Morozov, S. Yu. ( 1998; ). Biochemical characterization and subcellular localization of a 25K transport protein of potato virus X. Molekulyarnaya Biologiya (Moscow) 32, 569–573 (in Russian).
    [Google Scholar]
  79. Kalinina, N. O., Rakitina, D. A., Yelina, N. E. & 9 other authors ( 2001; ). RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J Gen Virol 82, 2569–2578.
    [Google Scholar]
  80. Kalinina, N. O., Rakitina, D. V., Solovyev, A. G., Schiemann, J. & Morozov, S. Yu. ( 2002; ). RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296, 321–329.[CrossRef]
    [Google Scholar]
  81. Karpova, O. V., Kozlovsky, S. V., Arkhipenko, M. V., Rodionova, N. P. & Atabekov, J. G. ( 1999; ). Complexes of tobacco mosaic virus RNA with a hordeivirus movement protein are infectious in plants susceptible to both viruses. Doklady RAN (Moscow) 368, 406–409 (in Russian).
    [Google Scholar]
  82. Kobayashi, K., Cabral, S., Calamante, G., Maldonado, S. & Mentaberry, A. ( 2001; ). Transgenic tobacco plants expressing the potato virus X open reading frame 3 gene develop specific resistance and necrotic ring symptoms after infection with the homologous virus. Mol Plant–Microbe Interact 14, 1274–1285.[CrossRef]
    [Google Scholar]
  83. Koenig, R., Pleij, C. W., Beier, C. & Commandeur, U. ( 1998; ). Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J Gen Virol 79, 2027–2036.
    [Google Scholar]
  84. Koonin, E. V. & Dolja, V. V. ( 1993; ). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28, 375–430.[CrossRef]
    [Google Scholar]
  85. Kotlizky, G., Boulton, M. I., Pitaksutheepong, C., Davies, J. W. & Epel, B. L. ( 2000; ). Intracellular and intercellular movement of maize streak geminivirus V1 and V2 proteins transiently expressed as green fluorescent protein fusions. Virology 274, 32–38.[CrossRef]
    [Google Scholar]
  86. Kragler, F., Monzer, J., Shash, K., Xoconostle-Cazares, B. & Lucas, W. J. ( 1998; ). Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15, 367–381.[CrossRef]
    [Google Scholar]
  87. Krishnamurthy, K., Mitra, R., Payton, M. E. & Verchot-Lubicz, J. ( 2002; ). Cell-to-cell movement of the PVX 12K, 8K, or coat proteins may depend on the host, leaf developmental stage, and the PVX 25K protein. Virology 300, 269–281.[CrossRef]
    [Google Scholar]
  88. Lauber, E., Bleykasten-Grosshans, C., Erhardt, M., Bouzoubaa, S., Jonard, G., Richards, K. E. & Guilley, H. ( 1998; ). Cell-to-cell movement of beet necrotic yellow vein virus. I. Heterologous complementation experiments provide evidence for specific interactions among the triple gene block proteins. Mol Plant–Microbe Interact 11, 618–625.[CrossRef]
    [Google Scholar]
  89. Lauber, E., Janssens, L., Weyens, G., Jonard, G., Richards, K. E., Lefebvre, M. & Guilley, H. ( 2001; ). Rapid screening for dominant negative mutations in the beet necrotic yellow vein virus triple gene block proteins P13 and P15 using a viral replicon. Transgenic Res 10, 293–302.[CrossRef]
    [Google Scholar]
  90. Lawrence, D. M. & Jackson, A. O. ( 2001a; ). Interactions of the TGB1 protein during cell-to-cell movement of barley stripe mosaic virus. J Virol 75, 8712–8723.[CrossRef]
    [Google Scholar]
  91. Lawrence, D. M. & Jackson, A. O. ( 2001b; ). Requirements for cell-to-cell movement of barley stripe mosaic virus in monocot and dicot hosts. Mol Plant Pathol 2, 65–75.[CrossRef]
    [Google Scholar]
  92. Lazarowitz, S. G. ( 1999; ). Probing plant cell structure and function with viral movement proteins. Curr Opin Plant Biol 2, 332–328.[CrossRef]
    [Google Scholar]
  93. Lazarowitz, S. G. & Beachy, R. N. ( 1999; ). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.[CrossRef]
    [Google Scholar]
  94. Lee, J.-Y., Yoo, B.-C., Rojas, M. R., Gomez-Ospina, N., Staehelin, L. A. & Lucas, W. J. ( 2003; ). Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299, 392–396.[CrossRef]
    [Google Scholar]
  95. Lehto, K., Bubrick, P. & Dawson, W. O. ( 1990; ). Time course of TMV 30K protein accumulation in intact leaves. Virology 174, 290–293.[CrossRef]
    [Google Scholar]
  96. Leisner, S. M. ( 1999; ). Molecular basis of virus transport in plants. In Molecular Biology of Plant Viruses, pp. 161–182. Edited by C. L. Mandahar. Boston/Dordrecht/London: Kluwer.
  97. Leonard, D. A. & Zaitlin, M. ( 1982; ). A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generate an altered virus-coded protein. Virology 117, 416–424.[CrossRef]
    [Google Scholar]
  98. Liou, D.-Y., Hsu, Y.-H., Wung, C.-H., Wang, W.-H., Lin, N.-S. & Chang, B.-Y. ( 2000; ). Functional analyses and identification of two arginine residues essential to the ATP-utilizing activity of the triple gene block protein 1 of bamboo mosaic potexvirus. Virology 277, 336–344.[CrossRef]
    [Google Scholar]
  99. Lough, T. J., Shash, K., Xoconostle-Cazares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. & Lucas, W. J. ( 1998; ). Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant–Microbe Interact 11, 801–814.[CrossRef]
    [Google Scholar]
  100. Lough, T. J., Netzler, N. E., Emerson, S. J., Sutherland, P., Carr, F., Beck, D. L., Lucas, W. J. & Forster, R. L. ( 2000; ). Cell-to-cell movement of potexviruses: evidence for a ribonucleic protein complex involving the coat protein and first triple gene block protein. Mol Plant–Microbe Interact 13, 962–974.[CrossRef]
    [Google Scholar]
  101. Lough, T. J., Emerson, S. J., Lucas, W. J. & Forster, R. L. ( 2001; ). Trans-complementation of long-distance movement of white clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology 288, 18–28.[CrossRef]
    [Google Scholar]
  102. Lucas, W. J. ( 1999; ). Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. J Exp Bot 50, 979–987.[CrossRef]
    [Google Scholar]
  103. Lucas, W. J., Yoo, B.-C. & Kragler, F. ( 2001; ). RNA as a long-distance information macromolecules in plants. Nature Rev Mol Cell Biol 2, 849–857.
    [Google Scholar]
  104. Malcuit, I., Marano, M. R., Kavanagh, T. A., De Jong, W., Forsyth, A. & Baulcombe, D. C. ( 1999; ). The 25-kDa movement protein of PVX elicits Nb-mediated hypersensitive cell death in potato. Mol Plant–Microbe Interact 12, 536–543.[CrossRef]
    [Google Scholar]
  105. Marcos, J. F., Vilar, M., Perez-Paya, E. & Pallas, V. ( 1999; ). In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from carnation mottle carmovirus (CarMV). Virology 255, 354–365.[CrossRef]
    [Google Scholar]
  106. McGeachy, K. D. & Barker, H. ( 2000; ). Potato mop-top virus RNA can move long distance in the absence of coat protein: evidence from resistant, transgenic plants. Mol Plant–Microbe Interact 13, 125–128.[CrossRef]
    [Google Scholar]
  107. Medina, V., Peremyslov, V. V., Hagiwara, Y. & Dolja, V. V. ( 1999; ). Subcellular localization of the HSP70-homolog encoded by beet yellows closterovirus. Virology 260, 173–181.[CrossRef]
    [Google Scholar]
  108. Melcher, U. ( 2000; ). The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81, 257–266.
    [Google Scholar]
  109. Mitchell, P. & Tollervey, D. ( 2001; ). mRNA turnover. Curr Opin Cell Biol 13, 320–325.[CrossRef]
    [Google Scholar]
  110. Mitsuhashi, N., Hayashi, Y., Koumoto, Y., Shimada, T., Fukasawa-Akada, T., Nishimura, M. & Hara-Nishimura, I. ( 2001; ). A novel membrane protein that is transported to protein storage vacuoles via precursor-accumulating vesicles. Plant Cell 13, 2361–2372.[CrossRef]
    [Google Scholar]
  111. Morozov, S. Yu. & Solovyev, A. G. ( 1999; ). Genome organization in RNA viruses. In Molecular Biology of Plant Viruses, pp. 47–98. Edited by C. L. Mandahar. Boston/Dordrecht/London: Kluwer.
  112. Morozov, S. Yu., Lukasheva, L. I., Chernov, B. K., Skryabin, K. G. & Atabekov, J. G. ( 1987; ). Nucleotide sequence of the open reading frames adjacent to the coat protein cistron in potato virus X genome. FEBS Lett 213, 438–442.[CrossRef]
    [Google Scholar]
  113. Morozov, S. Yu., Dolja, V. V. & Atabekov, J. G. ( 1989; ). Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J Mol Evol 29, 52–62.[CrossRef]
    [Google Scholar]
  114. Morozov, S. Yu., Miroshnichenko, N. A., Zelenina, D. A., Fedorkin, O. N., Solovijev, A. G., Lukasheva, L. I. & Atabekov, J. C. ( 1990; ). Expression of RNA transcripts of potato virus X full-length and subgenomic cDNAs. Biochimie 72, 677–684.[CrossRef]
    [Google Scholar]
  115. Morozov, S. Yu., Miroshnichenko, N. A., Solovyev, A. G., Zelenina, D. A., Fedorkin, O. N., Lukasheva, L. I., Grachev, S. A. & Chernov, B. K. ( 1991a; ). In vitro membrane binding of the translation products of the carlavirus 7-kDa protein genes. Virology 183, 782–785.[CrossRef]
    [Google Scholar]
  116. Morozov, S. Yu., Miroshnichenko, N. A., Solovyev, A. G., Fedorkin, O. N., Zelenina, D. A., Lukasheva, L. I., Karasev, A. V., Dolja, V. V. & Atabekov, J. G. ( 1991b; ). Expression strategy of the potato virus X triple gene block. J Gen Virol 72, 2039–2042.[CrossRef]
    [Google Scholar]
  117. Morozov, S. Yu., Fedorkin, O. N., Juttner, G., Schiemann, J., Baulcombe, D. C. & Atabekov, J. G. ( 1997; ). Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol 78, 2077–2083.
    [Google Scholar]
  118. Morozov, S. Yu., Solovyev, A. G., Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Schiemann, J. & Atabekov, J. G. ( 1999; ). Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260, 55–63.[CrossRef]
    [Google Scholar]
  119. Mushegian, A. R. & Koonin, E. V. ( 1993; ). Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Arch Virol 133, 239–257.[CrossRef]
    [Google Scholar]
  120. Napuli, A. J., Falk, B. W. & Dolja, V. V. ( 2000; ). Interaction between HSP70 homolog and filamentous virions of Beet yellows virus. Virology 274, 232–239.[CrossRef]
    [Google Scholar]
  121. Napuli, A. J., Alzhanova, D. V., Doneanu, C. E., Barofsky, D. F., Koonin, E. V. & Dolja, V. V. ( 2003; ). The 64-Kilodalton capsid protein homolog of Beet yellows virus is required for assembly of virion tails. J Virol 77, 2377–2384.[CrossRef]
    [Google Scholar]
  122. Nebenführ, A. ( 2002).; Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Curr Opin Plant Biol 13 , 97 –105.
    [Google Scholar]
  123. Niesbach-Klösgen, U., Guilley, H., Jonard, G. & Richards, K. ( 1990; ). Immunodetection in vivo of beet necrotic yellow vein virus-encoded proteins. Virology 178, 52–61.[CrossRef]
    [Google Scholar]
  124. Ohno, T., Takamatsu, N., Meshi, T., Okada, Y., Nishiguchi, M. & Kiho, Y. ( 1983; ). Single amino acid substitution in 30K protein of TMV defective in virus transport function. Virology 131, 255–258.[CrossRef]
    [Google Scholar]
  125. Oparka, K. J., Roberts, A. G., Boevink, P., Santa Cruz, S., Roberts, I., Pradel, K. S., Imlau, A., Kotlizky, G., Sauer, N. & Epel, B. ( 1999; ). Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97, 743–754.[CrossRef]
    [Google Scholar]
  126. Peng, C. W., Peremyslov, V. V., Mushegian, A. R., Dawson, W. O. & Dolja, V. V. ( 2001; ). Functional specialization and evolution of leader proteinases in the family Closteroviridae. J Virol 75, 12153–12160.[CrossRef]
    [Google Scholar]
  127. Peng, C. W., Peremyslov, V. V., Snijder, E. J. & Dolja, V. V. ( 2002; ). A replication-competent chimera of plant and animal viruses. Virology 294, 75–84.[CrossRef]
    [Google Scholar]
  128. Peng, C. W., Napuli, A. J. & Dolja, V. V. ( 2003; ). Leader proteinase of Beet yellows virus functions in long-distance transport. J Virol 77, 2843–2849.[CrossRef]
    [Google Scholar]
  129. Peremyslov, V. V., Hagiwara, Y. & Dolja, V. V. ( 1999; ). HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A 96, 14771–14776.[CrossRef]
    [Google Scholar]
  130. Petty, I. T. & Jackson, A. O. ( 1990; ). Mutational analysis of barley stripe mosaic virus RNA β. Virology 179, 712–718.[CrossRef]
    [Google Scholar]
  131. Petty, I. T., French, R., Jones, R. W. & Jackson, A. O. ( 1990; ). Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO J 9, 3453–3457.
    [Google Scholar]
  132. Pilipenko, E. V., Viktorova, E. G., Guest, S. T., Agol, V. I. & Roos, R. P. ( 2001; ). Cell-specific proteins regulate viral RNA translation and virus-induced disease. EMBO J 20, 6899–6908.[CrossRef]
    [Google Scholar]
  133. Pilon, M. & Schekman, R. ( 1999; ). Protein translocation: how Hsp70 pulls it off. Cell 97, 679–682.[CrossRef]
    [Google Scholar]
  134. Plante, C. A., Kim, K. H., Pillai-Nair, N., Osman, T. A., Buck, K. W. & Hemenway, C. L. ( 2000; ). Soluble, template-dependent extracts from Nicotiana benthamiana plants infected with potato virus X transcribe both plus- and minus-strand RNA templates. Virology 275, 444–451.[CrossRef]
    [Google Scholar]
  135. Ploubidou, A. & Way, M. ( 2001; ). Viral transport and the cytoskeleton. Curr Opin Cell Biol 13, 97–105.[CrossRef]
    [Google Scholar]
  136. Prokhnevsky, A. I., Peremyslov, V. V., Napuli, A. J. & Dolja, V. V. (2002; ). Interaction between long-distance transport factor and Hsp70-related movement protein of beet yellows virus. J Virol 76, 11003–11011.[CrossRef]
    [Google Scholar]
  137. Radford, J. E. & White, R. G. ( 2001; ). Effects of tissue preparation-induced callose synthesis on estimates of plasmodesmata size exclusion limits. Protoplasma 216, 47–55.[CrossRef]
    [Google Scholar]
  138. Rajamaki, M. L. & Valkonen, J. P. ( 1999; ). The 6K2 protein and the VPg of potato virus A are determinants of systemic infection in Nicandra physaloides. Mol Plant–Microbe Interact 12, 1074–1081.[CrossRef]
    [Google Scholar]
  139. Revers, F., Le Gall, O., Candresse, T. & Maule, A. J. ( 1999; ). New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant–Microbe Interact 12, 367–376.[CrossRef]
    [Google Scholar]
  140. Roberts, A. G. & Oparka, K. J. ( 2003; ). Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26, 103–124.[CrossRef]
    [Google Scholar]
  141. Roberts, I. M., Wang, D., Findlay, K. & Maule, A. J. ( 1998; ). Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 245, 173–181.[CrossRef]
    [Google Scholar]
  142. Rodriguez-Cerezo, E., Findlay, K., Shaw, J. G., Lomonossoff, G. P., Qiu, S. G., Linstead, P., Shanks, M. & Risco, C. ( 1997; ). The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236, 296–306.[CrossRef]
    [Google Scholar]
  143. Rojas, M. R., Zerbini, F. M., Allison, R. F., Gilbertson, R. L. & Lucas, W. J. ( 1997; ). Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283–295.[CrossRef]
    [Google Scholar]
  144. Rouleau, M., Smith, R. J., Bancroft, J. B. & Mackie, G. A. ( 1994; ). Purification, properties, and subcellular localization of foxtail mosaic potexvirus 26-kDa protein. Virology 204, 254–265.[CrossRef]
    [Google Scholar]
  145. Rupasov, V. V., Morozov, S. Yu., Kanyuka, K. V. & Zavriev, S. K. ( 1989; ). Partial nucleotide sequence of potato virus M RNA shows similarities to potexviruses in gene arrangement and the encoded amino acid sequences. J Gen Virol 70, 1861–1869.[CrossRef]
    [Google Scholar]
  146. Saenz, P., Salvador, B., Simon-Mateo, C., Kasschau, K. D., Carrington, J. C. & Garcia, J. A. ( 2002; ). Host-specific involvement of the HC protein in the long-distance movement of potyviruses. J Virol 76, 1922–1931.[CrossRef]
    [Google Scholar]
  147. Santa Cruz, S., Roberts, A. G., Prior, D. A. M., Chapman, S. & Oparka, K. J. ( 1998; ). Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. Plant Cell 10, 495–510.[CrossRef]
    [Google Scholar]
  148. Sato, K., Ueda, T. & Nakano, A. ( 1999; ). The Arabidopsis thaliana RER1 gene family: its potential role in the endoplasmic reticulum localization of membrane proteins. Plant Mol Biol 41, 815–824.[CrossRef]
    [Google Scholar]
  149. Sato, K., Sato, M. & Nakano, A. ( 2001; ). Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J Cell Biol 152, 935–944.[CrossRef]
    [Google Scholar]
  150. Schmitt, C., Balmori, E., Jonard, G., Richards, K. E. & Guilley, H. ( 1992; ). In vitro mutagenesis of biologically active transcripts of beet necrotic yellow vein virus RNA 2: evidence that a domain of the 75-kDa readthrough protein is important for efficient virus assembly. Proc Natl Acad Sci U S A 89, 5715–5719.[CrossRef]
    [Google Scholar]
  151. Scholze, P., Freissmuth, M. & Sitte, H. H. ( 2002; ). Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277, 43682–43690.[CrossRef]
    [Google Scholar]
  152. Schwartz, M., Chen, J., Janda, M., Sullivan, M., den Boon, J. & Ahlquist, P. ( 2002; ). A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9, 505–514.[CrossRef]
    [Google Scholar]
  153. Schwer, B. ( 2001; ). A new twist on RNA helicases: DExH/D box proteins as RNPases. Nature Struct Biol 8, 113–116.[CrossRef]
    [Google Scholar]
  154. Seppanen, P., Puska, R., Honkanen, J., Tyulkina, L. G., Fedorkin, O., Morozov, S. Yu. & Atabekov, J. G. ( 1997; ). Movement protein-derived resistance to triple gene block-containing plant viruses. J Gen Virol 78, 1241–1246.
    [Google Scholar]
  155. Sipos, L. & Von Heijne, G. ( 1993; ). Predicting the topology of eucaryotic membrane proteins. Eur J Biochem 213, 1333–1340.[CrossRef]
    [Google Scholar]
  156. Sit, T. L. & Abouhaidar, M. G. ( 1993; ). Infectious RNA transcripts derived from cloned cDNA of papaya mosaic virus: effect of mutations to the capsid and polymerase proteins. J Gen Virol 74, 1133–1140.[CrossRef]
    [Google Scholar]
  157. Sivaguru, M., Fujiwara, T., Samaj, J. & 7 other authors ( 2000; ). Aluminium-induced β-1,3-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiol 124, 991–1005.[CrossRef]
    [Google Scholar]
  158. Sjöberg, M. & Garoff, H. ( 2003; ). Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. J Virol 77, 3441–3450.[CrossRef]
    [Google Scholar]
  159. Skryabin, K. G., Morozov, S. Yu., Kraev, A. S., Rozanov, M. N., Chernov, B. K., Lukasheva, L. I. & Atabekov, J. G. ( 1988; ). Conserved and variable elements in RNA genomes of potexviruses. FEBS Lett 240, 33–40.[CrossRef]
    [Google Scholar]
  160. Solovyev, A. G., Savenkov, E. I., Agranovsky, A. A. & Morozov, S. Yu. ( 1996; ). Comparisons of the genomic cis-elements and coding regions in RNA β components of the hordeiviruses barley stripe mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219, 9–18.[CrossRef]
    [Google Scholar]
  161. Solovyev, A. G., Savenkov, E. I., Grdzelishvili, V. Z., Kalinina, N. O., Morozov, S. Yu., Schiemann, J. & Atabekov, J. G. ( 1999; ). Movement of hordeivirus hybrids with exchanges in the triple gene block. Virology 253, 278–287.[CrossRef]
    [Google Scholar]
  162. Solovyev, A. G., Stroganova, T. A., Zamyatnin, A. A., Jr, Fedorkin, O. N., Schiemann, J. & Morozov, S. Yu. ( 2000; ). Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269, 113–127.[CrossRef]
    [Google Scholar]
  163. Soultanas, P. & Wigley, D. B. ( 2001; ). Unwinding the ‘Gordian knot’ of helicase action. Trends Biochem Sci 26, 47–54.[CrossRef]
    [Google Scholar]
  164. Stephens, D. J. & Pepperkok, R. ( 2001; ). Illuminating the secretory pathway: when do we need vesicles? J Cell Sci 114, 1053–1059.
    [Google Scholar]
  165. Tamai, A. & Meshi, T. ( 2001; ). Cell-to-cell movement of potato virus X: the role of p12 and p8 encoded by the second and third open reading frames of the triple gene block. Mol Plant–Microbe Interact 14, 1158–1167.[CrossRef]
    [Google Scholar]
  166. Thomas, C. L. & Maule, A. J. ( 2000; ). Limitations on the use of fused green fluorescent protein to investigate structure–function relationships for the cauliflower mosaic virus movement protein. J Gen Virol 81, 1851–1855.
    [Google Scholar]
  167. Tseng, S. S., Weaver, P. L., Liu, Y., Hitomi, M., Tartakoff, A. M. & Chang, T. H. ( 1998; ). Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J 17, 2651–2662.[CrossRef]
    [Google Scholar]
  168. Tzfira, T., Rhee, Y., Chen, M. H., Kunik, T. & Citovsky, V. ( 2000; ). Nucleic acid transport in plant–microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54, 187–219.[CrossRef]
    [Google Scholar]
  169. Vance, V. & Vaucheret, H. ( 2001; ). RNA silencing in plants: defense and counterdefense. Science 292, 2277–2280.[CrossRef]
    [Google Scholar]
  170. Verchot, J., Angell, S. M. & Baulcombe, D. C. ( 1998; ). In vivo translation of the triple gene block of potato virus X requires two subgenomic mRNAs. J Virol. 72, 8316–8320.
  171. Vilar, M., Sauri, A., Monne, M., Marcos, J. F., von Heijne, G., Perez-Paya, E. & Mingarro, I. ( 2002; ). Insertion and topology of a plant viral movement protein in the endoplasmic reticulum membrane. J Biol Chem 277, 23447–23452.[CrossRef]
    [Google Scholar]
  172. Vitale, A. & Denecke, J. ( 1999; ). The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11, 615–628.
    [Google Scholar]
  173. Voinnet, O. ( 2001; ). RNA silencing as a plant immune system against viruses. Trends Genet 17, 449–459.[CrossRef]
    [Google Scholar]
  174. Voinnet, O., Lederer, C. & Baulcombe, D. C. ( 2000; ). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167.[CrossRef]
    [Google Scholar]
  175. von Bargen, S., Salchert, K., Paape, M., Piechulla, B. & Kellmann, J.-W. ( 2001; ). Interactions between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin and DNAJ-like chaperones. Plant Physiol Biochem 39, 1083–1093.[CrossRef]
    [Google Scholar]
  176. Waterhouse, P. M., Wang, M. B. & Lough, T. ( 2001; ). Gene silencing as an adaptive defence against viruses. Nature 411, 834–842.[CrossRef]
    [Google Scholar]
  177. Wong, S. M., Lee, K. C., Yu, H. H. & Leong, W. F. ( 1998; ). Phylogenetic analysis of triple gene block viruses based on the TGB 1 homolog gene indicates a convergent evolution. Virus Genes 16, 295–302.[CrossRef]
    [Google Scholar]
  178. Wung, C. H., Hsu, Y. H., Liou, D. Y., Huang, W. C., Lin, N. S. & Chang, B. Y. ( 1999; ). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. J Gen Virol 80, 1119–1126.
    [Google Scholar]
  179. Yang, Y., Ding, B., Baulcombe, D. C. & Verchot, J. ( 2000; ). Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. Mol Plant–Microbe Interact 13, 599–605.[CrossRef]
    [Google Scholar]
  180. Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Yu. & Valkonen, J. P. T. ( 2002; ). Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76, 12981–12991.[CrossRef]
    [Google Scholar]
  181. Zamyatnin, A. A., Jr, Solovyev, A. G., Sablina, A. A. & 7 other authors ( 2002; ). Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J Gen Virol 83, 651–662.
    [Google Scholar]
  182. Zamyatnin, A. A., Jr, Solovyev, A. G., Savenkov, E. I., Morozov, S. Yu. & Valkonen, J. P. T. ( 2003; ). Intracellular trafficking of the proteins encoded by the triple gene block of Potato mop-top virus. VIIIth International Congress of Plant Pathology. (Christchurch, New Zealand, 2–7 February, 2003).
  183. Zhou, H. & Jackson, A. O. ( 1996; ). Expression of the barley stripe mosaic virus RNA β ‘triple gene block’. Virology 216, 367–379.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18922-0
Loading
/content/journal/jgv/10.1099/vir.0.18922-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error