1887

Abstract

Hepatitis C virus (HCV) translation is mediated by an IRES structure. Instead of a poly(A) tail, the 3′ end of the genome contains a tripartite 3′NTR composed of a non-conserved region, a polypyrimidine tract and a highly conserved stretch of 98 nt, termed the 3′X region. Using a set of bicistronic recombinant DNA constructs expressing two reporter genes separated by the HCV IRES, it was determined whether the HCV 3′NTR sequence, in the presence or absence of HCV proteins, played a role in the efficiency of HCV IRES-dependent translation . Bicistronic expression cassettes were transfected into hepatic and non-hepatic cell lines. These results show that neither the entire 3′NTR nor the 3′X sequence alters IRES-dependent translation efficiency, whatever the cell line tested. A potential effect of the 3′NTR on IRES-dependent translation in the presence of HCV proteins was investigated further. Neither non-structural nor structural HCV proteins had any effect on the efficiency of IRES in this system. In addition, in order to mimic HCV genome organization, monocistronic expression cassettes containing the IRES and a Core–DsRed fusion gene were constructed with or without the 3′NTR. In this context, no effect of the 3′NTR on IRES translation efficiency was observed, even in the presence of HCV proteins. These data demonstrate that HCV translation is not modulated by the viral genomic 3′NTR sequence, even in the presence of HCV structural or non-structural proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18907-0
2003-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841549.html?itemId=/content/journal/jgv/10.1099/vir.0.18907-0&mimeType=html&fmt=ahah

References

  1. Ali, N. & Siddiqui, A. ( 1997; ). The La antigen binds 5′ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci U S A 94, 2249–2254.[CrossRef]
    [Google Scholar]
  2. Anwar, A., Ali, N., Tanveer, R. & Siddiqui, A. ( 2000; ). Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J Biol Chem 275, 34231–34235.[CrossRef]
    [Google Scholar]
  3. Banerjee, R. & Dasgupta, A. ( 2001; ). Specific interaction of hepatitis C virus protease/helicase NS3 with the 3′-terminal sequences of viral positive- and negative-strand RNA. J Virol 75, 1708–1721.[CrossRef]
    [Google Scholar]
  4. Bartenschlager, R. & Lohmann, V. ( 2000; ). Replication of the hepatitis C virus. Baillière's Best Pract Res Clin Gastroenterol 14, 241–254.[CrossRef]
    [Google Scholar]
  5. Blight, K. J. & Rice, C. M. ( 1997; ). Secondary structure determination of the conserved 98-base sequence at the 3′ terminus of hepatitis C virus genome RNA. J Virol 71, 7345–7352.
    [Google Scholar]
  6. Cheng, J. C., Chang, M. F. & Chang, S. C. ( 1999; ). Specific interaction between the hepatitis C virus NS5B RNA polymerase and the 3′ end of the viral RNA. J Virol 73, 7044–7049.
    [Google Scholar]
  7. Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. & Houghton, M. ( 1989; ). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362.[CrossRef]
    [Google Scholar]
  8. Collier, A. J., Tang, S. & Elliott, R. M. ( 1998; ). Translation efficiencies of the 5′ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79, 2359–2366.
    [Google Scholar]
  9. Fang, J. W. & Moyer, R. W. ( 2000; ). The effects of the conserved extreme 3′ end sequence of hepatitis C virus (HCV) RNA on the in vitro stabilization and translation of the HCV RNA genome. J Hepatol 33, 632–639.[CrossRef]
    [Google Scholar]
  10. Friebe, P. & Bartenschlager, R. ( 2002; ). Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76, 5326–5338.[CrossRef]
    [Google Scholar]
  11. Gallie, D. R. & Kobayashi, M. ( 1994; ). The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene 142, 159–165.[CrossRef]
    [Google Scholar]
  12. Gamarnik, A. V. & Andino, R. ( 1998; ). Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12, 2293–2304.[CrossRef]
    [Google Scholar]
  13. Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y. & Jang, S. K. ( 1998; ). Heterogeneous nuclear ribonucleoprotein L interacts with the 3′ border of the internal ribosomal entry site of hepatitis C virus. J Virol 72, 8782–8788.
    [Google Scholar]
  14. Honda, M., Rijnbrand, R., Abell, G., Kim, D. & Lemon, S. M. ( 1999; ). Natural variation in translational activities of the 5′ nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA–RNA interaction outside of the internal ribosomal entry site. J Virol 73, 4941–4951.
    [Google Scholar]
  15. Ito, T. & Lai, M. M. ( 1999; ). An internal polypyrimidine-tract-binding protein-binding site in the hepatitis C virus RNA attenuates translation, which is relieved by the 3′-untranslated sequence. Virology 254, 288–296.[CrossRef]
    [Google Scholar]
  16. Ito, T., Tahara, S. M. & Lai, M. M. ( 1998; ). The 3′-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72, 8789–8796.
    [Google Scholar]
  17. Kamoshita, N., Tsukiyama-Kohara, K., Kohara, M. & Nomoto, A. ( 1997; ). Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. Virology 233, 9–18.[CrossRef]
    [Google Scholar]
  18. Kato, J., Kato, N., Yoshida, H., Ono-Nita, S. K., Shiratori, Y. & Omata, M. ( 2002; ). Hepatitis C virus NS4A and NS4B proteins suppress translation in vivo. J Med Virol 66, 187–199.[CrossRef]
    [Google Scholar]
  19. Kien, F., Abraham, J. D., Schuster, C. & Kieny, M. P. ( 2003; ). Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. J Gen Virol 84, 561–566.[CrossRef]
    [Google Scholar]
  20. Kolykhalov, A. A., Feinstone, S. M. & Rice, C. M. ( 1996; ). Identification of a highly conserved sequence element at the 3′ terminus of hepatitis C virus genome RNA. J Virol 70, 3363–3371.
    [Google Scholar]
  21. Kolykhalov, A. A., Agapov, E. V., Blight, K. J., Mihalik, K., Feinstone, S. M. & Rice, C. M. ( 1997; ). Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574.[CrossRef]
    [Google Scholar]
  22. Kolykhalov, A. A., Mihalik, K., Feinstone, S. M. & Rice, C. M. ( 2000; ). Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol 74, 2046–2051.[CrossRef]
    [Google Scholar]
  23. Kong, L. K. & Sarnow, P. ( 2002; ). Cytoplasmic expression of mRNAs containing the internal ribosome entry site and 3′ noncoding region of hepatitis C virus: effects of the 3′ leader on mRNA translation and mRNA stability. J Virol 76, 12457–12462.[CrossRef]
    [Google Scholar]
  24. Laporte, J., Malet, I., Andrieu, T. & 7 other authors ( 2000; ). Comparative analysis of translation efficiencies of hepatitis C virus 5′ untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type. J Virol 74, 10827–10833.[CrossRef]
    [Google Scholar]
  25. Lerat, H., Shimizu, Y. K. & Lemon, S. M. ( 2000; ). Cell type-specific enhancement of hepatitis C virus internal ribosome entry site-directed translation due to 5′ nontranslated region substitutions selected during passage of virus in lymphoblastoid cells. J Virol 74, 7024–7031.[CrossRef]
    [Google Scholar]
  26. Li, W. & Brinton, M. A. ( 2001; ). The 3′ stem loop of the West Nile virus genomic RNA can suppress translation of chimeric mRNAs. Virology 287, 49–61.[CrossRef]
    [Google Scholar]
  27. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  28. Lohmann, V., Korner, F., Dobierzewska, A. & Bartenschlager, R. ( 2001; ). Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75, 1437–1449.[CrossRef]
    [Google Scholar]
  29. Lusky, M., Christ, M., Rittner, K. & 7 other authors ( 1998; ). In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72, 2022–2032.
    [Google Scholar]
  30. Michel, Y. M., Borman, A. M., Paulous, S. & Kean, K. M. ( 2001; ). Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation. Mol Cell Biol 21, 4097–4109.[CrossRef]
    [Google Scholar]
  31. Munroe, D. & Jacobson, A. ( 1990; ). mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol 10, 3441–3455.
    [Google Scholar]
  32. Murakami, K., Abe, M., Kageyama, T., Kamoshita, N. & Nomoto, A. ( 2001; ). Down-regulation of translation driven by hepatitis C virus internal ribosomal entry site by the 3′ untranslated region of RNA. Arch Virol 146, 729–741.[CrossRef]
    [Google Scholar]
  33. Oh, J. W., Ito, T. & Lai, M. M. ( 1999; ). A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol 73, 7694–7702.
    [Google Scholar]
  34. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. ( 1998; ). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67–83.[CrossRef]
    [Google Scholar]
  35. Reed, K. E. & Rice, C. M. ( 2000; ). Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol 242, 55–84.
    [Google Scholar]
  36. Reich, N. C., Sarnow, P., Duprey, E. & Levine, A. J. ( 1983; ). Monoclonal antibodies which recognize native and denatured forms of the adenovirus DNA-binding protein. Virology 128, 480–484.[CrossRef]
    [Google Scholar]
  37. Shimoike, T., Mimori, S., Tani, H., Matsuura, Y. & Miyamura, T. ( 1999; ). Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73, 9718–9725.
    [Google Scholar]
  38. Shine, J. & Dalgarno, L. ( 1974; ). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A 71, 1342–1346.[CrossRef]
    [Google Scholar]
  39. Tanaka, T., Kato, N., Cho, M. J. & Shimotohno, K. ( 1995; ). A novel sequence found at the 3′ terminus of hepatitis C virus genome. Biochem Biophys Res Commun 215, 744–749.[CrossRef]
    [Google Scholar]
  40. Tarun, S. Z., Jr, & Sachs, A. B. ( 1996; ). Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15, 7168–7177.
    [Google Scholar]
  41. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. ( 1992; ). Internal ribosome entry site within hepatitis C virus RNA. J Virol 66, 1476–1483.
    [Google Scholar]
  42. Vende, P., Piron, M., Castagne, N. & Poncet, D. ( 2000; ). Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol 74, 7064–7071.[CrossRef]
    [Google Scholar]
  43. Wang, T. H., Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Core protein-coding sequence, but not core protein, modulates the efficiency of cap-independent translation directed by the internal ribosome entry site of hepatitis C virus. J Virol 74, 11347–11358.[CrossRef]
    [Google Scholar]
  44. Yanagi, M., St Claire, M., Emerson, S. U., Purcell, R. H. & Bukh, J. ( 1999; ). In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A 96, 2291–2295.[CrossRef]
    [Google Scholar]
  45. Zhang, J., Yamada, O., Yoshida, H., Iwai, T. & Araki, H. ( 2002; ). Autogenous translational inhibition of core protein: implication for switch from translation to RNA replication in hepatitis C virus. Virology 293, 141–150.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18907-0
Loading
/content/journal/jgv/10.1099/vir.0.18907-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error