1887

Abstract

Prion diseases are associated with the conversion of the normal cellular prion protein, PrP, to the abnormal disease-associated protein, PrP. This conversion can be mimicked using PrP isolated from the brains of scrapie-infected animals to induce conversion of recombinant PrP into a proteinase K-resistant isoform, PrP. Traditionally, the ‘cell-free’ conversion assay has used, as substrate, recombinant PrP purified from mammalian tissue culture cells or, more recently, from baculovirus-infected insect cells. The cell-free conversion assay has been modified by replacing the tissue culture-derived PrP with recombinant PrP purified from bacteria. Bacterial expression and chromatographic purification give high yields of recombinant radiolabelled untagged protein, eliminates artefacts that may be due to cellular factors or antibody fragments normally present in labelled PrP preparations and allows accurate and rapid variation of protein sequence using standard molecular biological techniques. In addition, these cell-free conversion assays were carried out under more physiological conditions, giving more relevance to the assay as a model for conversion. To validate its use in this assay, this bacterial recombinant PrP has been shown to have the conversion properties of mammalian PrP: (i) it converts to a proteinase K-resistant isoform in the presence of PrP; (ii) the efficiency of this conversion by PrP of different strains and species parallels that found ; and (iii) its cell-free conversion is inhibited by Congo Red analogues in a structure-dependent manner similar to that seen in and cell assays.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18903-0
2003-04-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir841013.html?itemId=/content/journal/jgv/10.1099/vir.0.18903-0&mimeType=html&fmt=ahah

References

  1. Basler K., Oesch B., Scott M., Westaway D., Walchli M., Groth D. F., McKinley M. P., Prusiner S. B., Weissmann C.. 1986; Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell46:417–428
    [Google Scholar]
  2. Bessen R. A., Kocisko D. A., Raymond G. J., Marsh R. F., Lansbury P. T., Caughey B.. 1995; Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature375:698–700
    [Google Scholar]
  3. Boss R. P., Koopman J. P., Theuws J. l., Henderson P. T.. 1987; The essential role of the intestinal flora in the toxification of orally-administered benzidine-based dyes: internal exposure of rats to benzidine after intestinal azo reduction. Mut Res181:327 (Abstract
    [Google Scholar]
  4. Bossers A., Belt P. B. G. M., Raymond G. J., Caughey B., de Vries R., Smits M. A.. 1997; Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci U S A94:4931–4936
    [Google Scholar]
  5. Bossers A., de Vries R., Smits M. A.. 2000; Susceptibility of sheep for scrapie as assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol74:1407–1414
    [Google Scholar]
  6. Caughey B., Race R. E.. 1992; Potent inhibition of scrapie-associated PrP accumulation by Congo Red. J Neurochem59:768–771
    [Google Scholar]
  7. Caughey B., Chesebro B.. 1997; Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol7:56–62
    [Google Scholar]
  8. Caughey B., Ernst D., Race R. E.. 1993; Congo red inhibition of scrapie agent replication. J Virol67:6270–6272
    [Google Scholar]
  9. Collins S. J., Lewis V. L., Brazier M., Hill A. F., Fletcher A., Masters C. L.. 2002; Quinacrine does not prolong survival in a murine Creutzfeldt–Jakob disease model. Ann Neurol52:503–506
    [Google Scholar]
  10. DebBurman S. K., Raymond G. J., Caughey B., Lindquist S.. 1997; Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci U S A94:13938–13943
    [Google Scholar]
  11. Demaimay R., Harper J., Gordon H., Weaver D., Chesebro B., Caughey B.. 1998; Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem71:2534–2541
    [Google Scholar]
  12. Demaimay R., Chesebro B., Caughey B.. 2000; Inhibition of formation of protease-resistant prion protein by Trypan Blue, Sirius Red and other Congo Red analogs. Arch Virol16:277–283
    [Google Scholar]
  13. Doh-Ura K., Iwaki T., Caughey B.. 2000; Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol74:4894–4897
    [Google Scholar]
  14. Gilbert I. H., Rudyk H.. 1999; Inhibitors of protease-resistant prion formation. Int Antiviral News7:78–82
    [Google Scholar]
  15. Griffith J. S.. 1967; Self-replication and scrapie. Nature215:1043–1044
    [Google Scholar]
  16. Hill A. F., Antoniou M., Collinge J.. 1999; Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol80:11–14
    [Google Scholar]
  17. Hope J., Morton L. J. D., Farquhar C. F., Multhaup G., Beyreuther K., Kimberlin R. H.. 1986; The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J5:2591–2597
    [Google Scholar]
  18. Horiuchi M., Caughey B.. 1999; Specific binding of normal prion protein to the scrapie form via a localized domain initiates its conversion to the protease-resistant state. EMBO J18:3193–3203
    [Google Scholar]
  19. Horiuchi M., Priola S. A., Chabry J., Caughey B.. 2000; Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci U S A97:5836–5841
    [Google Scholar]
  20. Ingrosso L., Ladogana A., Pocchiari M.. 1995; Congo red prolongs the incubation period in scrapie-infected hamsters. J Virol69:506–508
    [Google Scholar]
  21. Iniguez V., McKenzie D., Mirwald J., Aiken J.. 2000; Strain-specific propagation of PrPSc properties into baculovirus-expressed hamster PrPC. J Gen Virol81:2565–2571
    [Google Scholar]
  22. Jackson G. S., Hill A. F., Joseph C., Hosszu L., Power A., Waltho J. P., Clarke A. R., Collinge J.. 1999; Multiple folding pathways for heterologously expressed human prion protein. Biochim Biophys Acta1431:1–13
    [Google Scholar]
  23. Jarrett J. T., Lansbury P. T. Jr. 1993; Seeding ‘one-dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?. Cell73:1055–1058
    [Google Scholar]
  24. Kocisko D. A., Come J. H., Priola S. A., Chesebro B., Raymond G. J., Lansbury P. T., Caughey B.. 1994; Cell-free formation of protease-resistant prion protein. Nature370:471–474
    [Google Scholar]
  25. Kocisko D. A., Priola S. A., Raymond G. J., Chesebro B., Lansbury P. T. Jr, Caughey B.. 1995; Species-specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci U S A92:3923–3927
    [Google Scholar]
  26. Korth C., May B. C. H., Cohen F. E., Prusiner S. B.. 2001; Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A98:9836–9841
    [Google Scholar]
  27. Locht C., Chesebro B., Race R., Keith J. M.. 1986; Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc Natl Acad Sci U S A83:6372–6376
    [Google Scholar]
  28. McKenzie D., Bartz J., Mirwald J., Olander D., Marsh R., Aiken J.. 1998; Reversibility of scrapie inactivation is enhanced by copper. J Biol Chem273:25545–25547
    [Google Scholar]
  29. Meyer R. K., McKinley M. P., Bowman K. A., Braunfeld M. B., Barry R. A., Prusiner S. B.. 1986; Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A83:2310–2314
    [Google Scholar]
  30. Oesch B., Westaway D., Walchli M.. other authors 1985; A cellular gene encodes scrapie PrP27-30 protein. Cell40:735–746
    [Google Scholar]
  31. Prusiner S. B.. 1991; Molecular biology of prion diseases. Science252:1515–1522
    [Google Scholar]
  32. Prusiner S. B., Groth D. F., McKinley M. P., Cochran S. P., Bowman K. A., Masiarz F. R.. 1982; Novel infectious pathogens cause brain degeneration in scrapie. Clin Res30:531
    [Google Scholar]
  33. Raymond G. J., Hope J., Kocisko D. A.. 12 other authors 1997; Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature388:285–288
    [Google Scholar]
  34. Rudyk H., Vasiljevic S., Hennion R. M., Birkett C. R., Hope J., Gilbert I. H.. 2000; Screening Congo Red and its analogues for their ability to prevent the formation of PrPres in scrapie-infected cells. J Gen Virol81:1155–1164
    [Google Scholar]
  35. Saborio G. P., Soto C., Kascsak R. J., Levy E., Kascsak R., Harris D. A., Frangione B.. 1999; Cell-lysate conversion of prion protein into its protease-resistant isoform suggests the participation of a cellular chaperone. Biochem Biophys Res Commun258:470–475
    [Google Scholar]
  36. Wells G. A. H., Scott A. C., Johnson C. T., Gunning R. F., Hancock R. D., Jeffrey M., Dawson M., Bradley R.. 1987; A novel progressive spongiform encephalopathy in cattle. Vet Rec121:419–420
    [Google Scholar]
  37. Will R. G., Ironside J. W., Zeidler M.. 7 other authors 1996; A new variant of Creutzfeldt–Jakob disease in the UK. Lancet347:921–925
    [Google Scholar]
  38. Zhang F., Zhang J., Zhou W., Zhang B. Y., Hung T., Dong X. P.. 2002; Expression of PrPC as HIS-fusion form in a baculovirus system and conversion of expressed PrPsen to PrPres in a cell-free system. Virus Res87:145–153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18903-0
Loading
/content/journal/jgv/10.1099/vir.0.18903-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error