1887

Abstract

Cultivation of retrovirus packaging cells at 32 °C represents a common procedure to achieve high titres in mouse retrovirus production. Gene expression profiling of mouse NIH 3T3 cells producing amphotropic mouse leukaemia virus 4070A revealed that 10 % of the 1176 cellular genes investigated were regulated by temperature shift (37/32 °C), while 5 % were affected by retrovirus infection. Strikingly, retrovirus production at 32 °C activated the cholesterol biosynthesis/transport pathway and caused an increase in plasma membrane cholesterol levels. Furthermore, these conditions resulted in transcriptional activation of (), () and ; Smo, Ptc and Gli-1, as well as cholesterol, are components of the Sonic hedgehog (Shh) signalling pathway, which directs pattern formation, diversification and tumourigenesis in mammalian cells. These findings suggest a link between cultivation at 32 °C, production of MLV-A and the Shh signalling pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18871-0
2003-07-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/7/vir841677.html?itemId=/content/journal/jgv/10.1099/vir.0.18871-0&mimeType=html&fmt=ahah

References

  1. Beer C., Meyer A., Müller K., Wirth M. 2003; The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology (in Press)
    [Google Scholar]
  2. Cicala C., Arthos J., Selig S. M. 11 other authors 2002; HIV envelope induces a cascade of cell signals in non-proliferating target cell that favor virus replication. Proc Natl Acad Sci U S A 99:9380–9385
    [Google Scholar]
  3. Cosset F. L., Takeuchi Y., Battini J. L., Weiss R. A., Collins M. K. L. 1995; High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436
    [Google Scholar]
  4. Cossins A. R. (editor) 1994 Temperature Adaptation of Biological Membranes Colchester: Portland Press;
    [Google Scholar]
  5. Cruz P. E., Almeida J. S., Murphy P. N., Moreira J. L., Carrondo M. J. T. 2000; Modeling retrovirus production for gene therapy. I. Determination of optimal bioreaction mode and harvest strategy. Biotechnol Prog 16:213–221
    [Google Scholar]
  6. Cudmore S., Reckmann I., Way M. 1997; Viral manipulations of the actin cytoskeleton. Trends Microbiol 5:142–148
    [Google Scholar]
  7. Ferry N., Duplessis O., Houssin D., Danos O., Heard J.-M. 1991; Retroviral-mediated gene transfer into hepatocytes in vivo . Proc Natl Acad Sci U S A 88:8377–8381
    [Google Scholar]
  8. Forestell S. P., Bohnlein E., Rigg R. J. 1995; Retroviral end-point titer is not predictive of gene transfer efficiency: implications for vector production. Gene Ther 2:723–730
    [Google Scholar]
  9. Fujita J. 1999; Cold shock response in mammalian cells. J Mol Microbiol Biotechnol 1:243–255
    [Google Scholar]
  10. Geiss G. K., Bumgarner R. E., An M. C. 7 other authors 2000; Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microassays. Virology 266:8–16
    [Google Scholar]
  11. Gu J. Z., Carstea E. D., Cummings C. 12 other authors 1997; Substantial narrowing of the Niemann-Pick C candidate interval by yeast artificial chromosome complementation. Proc Natl Acad Sci U S A 94:7378–7383
    [Google Scholar]
  12. Guthridge M. A., Bellosta P., Tavoloni N., Basilico C. 1997; FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression. Mol Cell Biol 17:5485–5498
    [Google Scholar]
  13. Hahn H., Wojnowski L., Miller G., Zimmer A. 1999; The patched signaling pathway in tumorigenesis and development: lessons from animal models. J Mol Med 77:459–468
    [Google Scholar]
  14. Kaptein L. C. M., Greijer A. E., Valerio D., van Beusechem V. W. 1997; Optimized conditions for the production of recombinant amphotropic retroviral vector preparations. Gene Ther 4:172–176
    [Google Scholar]
  15. Karpen H. E., Bukowski J. T., Hughes T., Gratton J. P., Sessa W. C., Gailani M. R. 2001; The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J Biol Chem 276:19503–19511
    [Google Scholar]
  16. Kotani H., Newton P. B. III, Zhang S., Chiang Y. L., Otto E., Weaver L., Blaese R. M., Anderson W. F., McGarrity G. J. 1994; Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 5:19–28
    [Google Scholar]
  17. Lechner O., Lauber J., Franzke A., Sarukhan A., von Boehmer H., Buer J. 2001; Fingerprints of anergic T cells. Curr Biol 11:587–595
    [Google Scholar]
  18. Le Doux J. M., Davis H. E., Morgan J. R., Yarmush M. L. 1999; Kinetics of retrovirus production and decay. Biotechnol Bioeng 63:654–662
    [Google Scholar]
  19. Martin V., Carrillo G., Torroja C., Guerrero I. 2001; The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr Biol 11:601–607
    [Google Scholar]
  20. Mountain A. 2000; Gene therapy: the first decade. Trends Biotech 18:119–128
    [Google Scholar]
  21. Nishiyama H., Itoh K., Kaneko Y., Kishishita M., Yoshida O., Fujita J. 1997; A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899–908
    [Google Scholar]
  22. Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. 1998; Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes' at the plasma membrane. J Biol Chem 273:5419–5422
    [Google Scholar]
  23. Pietiäinen V., Huttunen P., Hyypiä T. 2000; Effects of echovirus 1 infection on cellular gene expression. Virology 276:243–250
    [Google Scholar]
  24. Rajavashisth T. B., Taylor A. K., Andalibi A., Svenson K. L., Lusis A. J. 1989; Identification of a zinc finger protein that binds to the sterol regulatory element. Science 245:640–643
    [Google Scholar]
  25. Ryo A., Suzuki Y., Ichiyama K., Wakatsuki T., Kondoh N., Hada A., Yamamoto M., Yamamoto N. 1999; Serial analysis of gene expression in HIV-1-infected T cell lines. FEBS Lett 462:182–186
    [Google Scholar]
  26. Ryo A., Suzuki Y., Arai M. 8 other authors 2000; Identification and characterization of differentially expressed mRNAs in HIV type 1-infected human T cells. AIDS Res Hum Retroviruses 16:995–1005
    [Google Scholar]
  27. Sodeik B. 2000; Mechanisms of viral transport in the cytoplasm. Trends Microbiol 8:465–472
    [Google Scholar]
  28. Sonna L. A., Fujita J., Gaffin S. L., Lilly C. M. 2002; Effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742
    [Google Scholar]
  29. Strutt H., Thomas C., Nakano Y., Stark D., Neave B., Taylor A. M., Ingham P. W. 2001; Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr Biol 11:608–613
    [Google Scholar]
  30. Tominaga S. 1989; A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett 258:301–304
    [Google Scholar]
  31. Wirth M., Bode J., Zettlmeissl G., Hauser H. 1988; Isolation of overproducing recombinant mammalian cell lines by a fast and simple selection procedure. Gene 73:419–426
    [Google Scholar]
  32. Wirth M., Grannemann R., Klehr D., Hauser H. 1994; Screening retroviral packaging cells for highly efficient virus production by using a combined selection procedure. J Virol 68:566–569
    [Google Scholar]
  33. Wu N., Ataai M. M. 2000; Production of viral vectors for gene therapy applications. Curr Opin Biotechnol 11:205–208
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.18871-0
Loading
/content/journal/jgv/10.1099/vir.0.18871-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error