Absence of viral antigens on the surface of equine herpesvirus-1-infected peripheral blood mononuclear cells: a strategy to avoid complement-mediated lysis Free

Abstract

Equine herpesvirus-1 (EHV-1) may cause abortion in vaccination- and infection-immune horses. EHV-1-infected peripheral blood mononuclear cells (PBMCs) play an important role in virus immune evasion. The mechanisms by which infected PBMCs can avoid destruction by EHV-1-specific antibody and equine complement were examined. The majority of EHV-1-infected PBMCs (68·6 %) lacked surface expression of viral antigens and these cells were not susceptible to complement-mediated lysis. In infected PBMCs with surface expression of viral antigens, 63 % showed focal surface expression, whereas 37 % showed general surface expression. General surface expression rendered infected PBMCs susceptible to lysis by antibody and complement (from 5·4 to 31·2 % lysed cells depending on the concentration of antibody and complement). Infected PBMCs with focal surface expression showed significant lysis only in the presence of high concentrations of antibody and complement. Thus, the absence of surface expression protects infected PBMCs against complement-mediated lysis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18864-0
2003-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840093.html?itemId=/content/journal/jgv/10.1099/vir.0.18864-0&mimeType=html&fmt=ahah

References

  1. Allen G. P., Bryans J. T. 1986; Molecular epizootiology, pathogenesis, and prophylaxis of equine herpesvirus-1 infections. Prog Vet Microbiol Immunol 2:78–144
    [Google Scholar]
  2. Audonnet J. C., Winslow J., Allen G., Paoletti E. 1990; Equine herpesvirus type 1 unique short fragment encodes glycoproteins with homology to herpes simplex virus type 1 gD, gI and gE. J Gen Virol 71:2969–2978
    [Google Scholar]
  3. Bürki F., Rossmanith W., Nowotny N., Pallan C., Möstl K., Lussy H. 1990; Viraemia and abortions are not prevented by two commercial equine herpesvirus-1 vaccines after experimental challenge of horses. Vet Q 12:80–86
    [Google Scholar]
  4. Doll E. R., Bryans J. T. 1963; Immunisation of young horses against viral rhinopneumonitis. Cornell Vet 53:24–41
    [Google Scholar]
  5. Elton D. M., Bonass W. A., Killington R. A., Meredith D. M., Halliburton I. W. 1991; Location of open reading frames coding for equine herpesvirus type-1 glycoproteins with homology to gE and gI of herpes simplex virus. Am J Vet Res 52:1252–1257
    [Google Scholar]
  6. Favoreel H. W., Nauwynck H. J., Van Oostveldt P., Mettenleiter T. C., Pensaert M. B. 1997; Antibody-induced and cytoskeleton-mediated redistribution and shedding of viral glycoproteins, expressed on pseudorabies virus-infected cells. J Virol 71:8254–8261
    [Google Scholar]
  7. Favoreel H. W., Nauwynck H. J., Halewyck H. M., Van Oostveldt P., Mettenleiter T. C., Pensaert M. B. 1999; Antibody-induced endocytosis of viral glycoproteins and major histocompatibility complex class I on pseudorabies virus-infected monocytes. J Gen Virol 80:1283–1291
    [Google Scholar]
  8. Favoreel H. W., Nauwynck H. J., Pensaert M. B. 2000; Immunological hiding of herpesvirus-infected cells. Arch Virol 145:1269–1290
    [Google Scholar]
  9. Fish K. N., Britt W., Nelson J. A. 1996; A novel mechanism for persistence of human cytomegalovirus in macrophages. J Virol 70:1855–1862
    [Google Scholar]
  10. Frank I., Friedman H. M. 1989; A novel function of the herpes simplex virus type I Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol 63:4479–4488
    [Google Scholar]
  11. Friedman H. M., Cohen G. H., Eisenberg R. J., Seidel C. A., Cines D. B. 1984; Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 309:633–635
    [Google Scholar]
  12. Friedman H. M., Wang L., Pangburn M. K., Lambris J. D., Lubinski J. 2000; Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J Immunol 165:4528–4536
    [Google Scholar]
  13. Gleeson L. J., Coggins L. 1980; Response of pregnant mares to equine herpesvirus 1 (EHV1). Cornell Vet 70:391–400
    [Google Scholar]
  14. Harper D. R. 1994; Viral interactions with the immune system. In Molecular Virology, 1st edn. pp  51–73 Oxford: BIOS Scientific;
    [Google Scholar]
  15. Harris S. L., Frank I., Yee A., Cohen G. H., Eisenberg R. J., Friedman H. M. 1990; Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J Infect Dis 162:331–337
    [Google Scholar]
  16. Heldens J. G. M., Hannant D., Cullinane A. A., Prendergast M. J., Mumford J. A., Nelly M., Kydd J. H., Weststrate M. W., van den Hoven R. 2001; Clinical and virological evaluation of the efficacy of an inactivated EHV1 and EHV4 whole virus vaccine (Duvaxyn EHV1,4). Vaccination/challenge experiments in foals and pregnant mares. Vaccine 19:4307–4317
    [Google Scholar]
  17. Huemer H. P., Larcher C., Coe N. E. 1992; Pseudorabies virus glycoprotein III derived from virions and infected cells binds to the third component of complement. Virus Res 23:271–280
    [Google Scholar]
  18. Huemer H. P., Larcher C., van Drunen Littel-van den Hurk S., Babiuk L. A. 1993; Species selective interaction of Alphaherpesvirinae with the ‘unspecific’ immune system of the host. Arch Virol 130:353–364
    [Google Scholar]
  19. Huemer H. P., Nowotny N., Crabb B. S., Meyer H., Hübert P. H. 1995; gp13 (EHV-gC): a complement receptor induced by equine herpesviruses. Virus Res 37:113–126
    [Google Scholar]
  20. Ish C., Ong G. L., Desai N., Mattes M. J. 1993; The specificity of alternative complement pathway-mediated lysis of erythrocytes: a survey of complement and target cells from 25 species. Scand J Immunol 38:113–122
    [Google Scholar]
  21. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol 62:1347–1354
    [Google Scholar]
  22. Joseph B. S., Cooper N. R., Oldstone M. B. A. 1975; Immunologic injury of cultured cells infected with measles virus. I. Role of IgG antibody and the alternative complement pathway. J Exp Med 141:761–774
    [Google Scholar]
  23. Leid R. W., Coley S. C., Blanchard D. P., Perryman L. E. 1985; Equine alternative pathway activation by unsensitized rabbit red blood cells. Vet Immunol Immunopathol 9:71–85
    [Google Scholar]
  24. Litwin V., Jackson W., Grose C. 1992; Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J Virol 66:3643–3651
    [Google Scholar]
  25. Mumford J. A., Rossdale P. D., Jesset D. M., Gann S., Ousey J., Cook R. F. 1987; Serological and virological investigations of an equid herpesvirus 1 (EHV-1) abortion storm on a stud farm in 1985. J Reprod Fertil 35:509–518
    [Google Scholar]
  26. Nagashunmugam T., Lubinski J., Wang L., Goldstein L. T., Weeks B. S., Sundaresan P., Kang E. H., Dubin G., Friedman H. M. 1998; In vivo immune evasion mediated by the herpes simplex virus type I immunoglobulin G Fc receptor. J Virol 72:5351–5359
    [Google Scholar]
  27. Perrin L. H., Joseph B. S., Cooper N. R., Oldstone M. B. A. 1976; Mechanism of injury of virus-infected cells by antiviral antibody and complement: participation of IgG, F(ab′)2, and the alternative complement pathway. J Exp Med 143:1027–1041
    [Google Scholar]
  28. Sissons J. G. P., Schreiber R. D., Perrin L. H., Cooper N. R., Müller-Eberhard H. J., Oldstone M. B. A. 1979; Lysis of measles virus-infected cells by the purified cytolytic alternative complement pathway and antibody. J Exp Med 150:445–454
    [Google Scholar]
  29. Telford E. A., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  30. van der Meulen K. M., Nauwynck H. J., Buddaert W., Pensaert M. B. 2000; Replication of equine herpesvirus type 1 in freshly isolated equine peripheral blood mononuclear cells and changes in susceptibility following mitogen stimulation. J Gen Virol 81:21–25
    [Google Scholar]
  31. van der Meulen K. M., Nauwynck H. J., Pensaert M. B. 2001; Mitogen stimulation favours replication of equine herpesvirus-1 in equine blood mononuclear cells by inducing cell proliferation and formation of close intercellular contacts. J Gen Virol 82:1951–1957
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18864-0
Loading
/content/journal/jgv/10.1099/vir.0.18864-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed