Mapping epitopes in equine rhinitis A virus VP1 recognized by antibodies elicited in response to infection of the natural host Free

Abstract

Equine rhinitis A virus (ERAV) is an important respiratory pathogen of horses and is of additional interest because of its close relationship and common classification with foot-and-mouth disease virus (FMDV). As is the case with FMDV, the VP1 capsid protein of ERAV has been shown to be a target of neutralizing antibodies. In FMDV VP1, such antibodies commonly recognize linear epitopes present in the G–H loop region. To map linear B cell epitopes in ERAV VP1, overlapping fragments spanning its length were expressed in as glutathione -transferase (GST) fusion proteins. These fusion proteins were tested for reactivity with sera from ERAV-infected horses and with polyclonal sera from ERAV-immunized rabbits and mice. Regions at the N- and C-termini as well as the E–F and the G–H loop regions contained B cell epitopes that elicited antibodies in the natural host. GST fusion proteins of these regions also elicited antibodies following immunization of rabbits and mice, which, in general, strongly recognized native ERAV VP1 but which were non-neutralizing. It is concluded that the N-terminal region of ERAV VP1, in particular, contains strong B cell epitopes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18848-0
2003-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/6/vir841607.html?itemId=/content/journal/jgv/10.1099/vir.0.18848-0&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Foz G., Rowlands D., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337:709–716
    [Google Scholar]
  2. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. 1995; Antibodies to the vitronectin receptor (integrin α V β 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 69:2664–2666
    [Google Scholar]
  3. Brown F. 1992; New approaches to vaccination against foot-and-mouth disease. Vaccine 10:1022–1026
    [Google Scholar]
  4. Crabb B. S., Nagesha H. S., Studdert M. J. 1992; Identification of equine herpesvirus 4 glycoprotein G: a type-specific, secreted glycoprotein. Virology 190:143–154
    [Google Scholar]
  5. Crabb B. S., MacPherson C. M., Reubel G. H., Browning G. F., Studdert M. J., Drummer H. E. 1995; A type-specific serological test to distinguish antibodies to equine herpesviruses 4 and 1. Arch Virol 140:245–258
    [Google Scholar]
  6. Curry S., Fry E., Blakemore W., Abu-Ghazaleh R., Jackson T., King A., Lea S., Newman J., Stuart D. 1997; Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol 71:9743–9752
    [Google Scholar]
  7. Danen E. H., Aota S. I., van Kraats A. A., Yamada K. M., Ruiter D. J., van Muijen G. N. 1995; Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin α 5 β 1 . J Biol Chem 270:21612–21618
    [Google Scholar]
  8. DiMarchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N. 1986; Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232:639–641
    [Google Scholar]
  9. Fricks C. E., Hogle J. M. 1990; Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64:1934–1945
    [Google Scholar]
  10. Hartley C. A., Ficorilli N., Dynon K., Drummer H. E., Huang J. A., Studdert M. J. 2001; Equine rhinitis A virus: structural proteins and immune response. J Gen Virol 82:1725–1728
    [Google Scholar]
  11. Jackson T. J., Sheppard D., Denyer M., Blakemore W., King A. M. Q. 2000; The epithelial integrin α v β 6 is a receptor for foot-and-mouth disease virus. J Virol 74:4949–4956
    [Google Scholar]
  12. Lea S., Hernandez J., Blakemore W. 7 other authors 1994; The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2:123–139
    [Google Scholar]
  13. Li F., Browning G. F., Studdert M. J., Crabb B. S. 1996; Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proc Natl Acad Sci U S A 93:990–995
    [Google Scholar]
  14. Luo M., Rossmann M. G., Palmenberg A. C. 1988; Prediction of three-dimensional models for foot-and-mouth disease virus and hepatitis A virus. Virology 166:503–514
    [Google Scholar]
  15. Mateu M. G. 1995; Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res 38:1–24
    [Google Scholar]
  16. Mateu M. G., Andreu D., Domingo E. 1995; Antibodies raised in a natural host and monoclonal antibodies recognize similar antigenic features of foot-and-mouth disease virus. Virology 210:120–127
    [Google Scholar]
  17. Newman J. F. E., Rowlands D. J., Brown F. 1973; A physio-chemical sub-grouping of the mammalian picornaviruses. J Gen Virol 18:171–180
    [Google Scholar]
  18. Page G. S., Mosser A., Hogle J. M., Filman D. J., Rueckert R. R., Chow M. 1988; Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J Virol 62:1781–1794
    [Google Scholar]
  19. Ping L. H., Lemon S. M. 1992; Antigenic structure of human hepatitis A virus defined by analysis of escape mutants selected against murine monoclonal antibodies. J Virol 66:2208–2216
    [Google Scholar]
  20. Plummer G. 1962; An equine respiratory virus with enterovirus properties. Nature 195:519–520
    [Google Scholar]
  21. Plummer G. 1963; An equine respiratory enterovirus: some biological and physical properties. Arch Gesamte Virusforsch 12:694–700
    [Google Scholar]
  22. Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypia T. 1994; Entry of coxsackievirus A9 into host cells: specific interactions with α v β 3 integrin, the vitronectin receptor. Virology 203:357–365
    [Google Scholar]
  23. Rueckert R. R. 2001; Picornaviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  685–715 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  24. Stanway G. 1990; Structure, function and evolution of picornaviruses. J Gen Virol 71:2483–2501
    [Google Scholar]
  25. Strohmaier K., Franze R., Adam K. H. 1982; Location and characterisation of the antigenic portion of the FMDV immunizing protein. J Gen Virol 59:295–306
    [Google Scholar]
  26. Studdert M. J., Gleeson L. J. 1978; Isolation and characterisation of an equine rhinovirus. Zentralbl Veterinarmed B 25:225–237
    [Google Scholar]
  27. Varrasso A., Drummer H. E., Huang J. A., Stevenson R. A., Ficorilli N., Studdert M. J., Hartley C. A. 2001; Sequence conservation and antigenic variation of the structural proteins of equine rhinitis A virus. J Virol 75:10550–10556
    [Google Scholar]
  28. Warner S., Hartley C. A., Stevenson R. A., Ficorilli N., Varrasso A., Studdert M. J., Crabb B. S. 2001; Evidence that equine rhinitis A virus is a target of neutralizing antibodies and participates directly in receptor binding. J Virol 75:9274–9281
    [Google Scholar]
  29. Wutz G., Auer H., Nowotny N., Grosse B., Skern T., Kuechler E. 1996; Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. J Gen Virol 77:1719–1730
    [Google Scholar]
  30. Xie Q. C., McCahon D., Crowther J. R., Belsham G. J., McCullough K. C. 1987; Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol 68:1637–1647
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18848-0
Loading
/content/journal/jgv/10.1099/vir.0.18848-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed