1887

Abstract

Yellow head virus (YHV) is a major agent of disease in farmed penaeid shrimp. YHV virions purified from infected shrimp contain three major structural proteins of molecular mass 116 kDa (gp116), 64 kDa (gp64) and 20 kDa (p20). Two different staining methods indicated that the gp116 and gp64 proteins are glycosylated. Here we report the complete nucleotide sequence of ORF3, which encodes a polypeptide of 1666 amino acids with a calculated molecular mass of 185 713 Da (pI=6·68). Hydropathy analysis of the deduced ORF3 protein sequence identified six potential transmembrane helices and three ectodomains containing multiple sites for potential -linked and -linked glycosylation. N-terminal sequence analysis of mature gp116 and gp64 proteins indicated that each was derived from ORF3 by proteolytic cleavage of the polyprotein between residues Ala and Thr, and Ala and Leu, located at the C-terminal side of transmembrane helices 3 and 5, respectively. Comparison with the deduced ORF3 protein sequence of Australian gill-associated virus (GAV) indicated 83 % amino acid identity in gp64 and 71 % identity in gp116, which featured two significant sequence deletions near the N terminus. Database searches revealed no significant homology with other proteins. Recombinant gp64 expressed in with and without the C-terminal transmembrane region was shown to react with antibody raised against native gp64 purified from virions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18811-0
2003-04-01
2021-02-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840863.html?itemId=/content/journal/jgv/10.1099/vir.0.18811-0&mimeType=html&fmt=ahah

References

  1. Almazan F., Gonzalez J. M., Penzes Z., Izeta A., Calvo E., Plana-Duran J., Enjuanes L.. 2000; Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A97:5516–5521
    [Google Scholar]
  2. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappin D. J. C., Brown T. D.. 1985; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J Gen Virol66:719–727
    [Google Scholar]
  3. Britton P.. 1991; Coronavirus motif. Nature353:394
    [Google Scholar]
  4. Cavanagh D.. 1995; The coronavirus surface glycoprotein. In The Coronaviridae pp 73–113 Edited by Siddell S. G.. New York: Plenum Press;
    [Google Scholar]
  5. Chantanachookin C., Boonyaratpalin S., Kasornchandra J., Sataporn D., Aekpanithanpong U., Supamataya K., Sriurairatana S., Flegel T. W.. 1993; Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow-head disease. Dis Aquat Organ17:145–157
    [Google Scholar]
  6. Cowley J. A., Walker P. J.. 2002; The complete sequence of gill-associated virus of Penaeus monodon prawns indicates a gene organisation unique among nidoviruses. Arch Virol147:1977–1987
    [Google Scholar]
  7. Cowley J. A., Dimmock C. M., Wongteerasupaya C., Boonsaeng V., Panyim S., Walker P. J.. 1999; Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct prawn viruses. Dis Aquat Org36:153–157
    [Google Scholar]
  8. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J.. 2000; Gill-associated virus of Penaeus monodon prawns: an invertebrate nidovirus with ORF1a and ORF1b genes related to arteri- and coronaviruses. J Gen Virol81:1473–1484
    [Google Scholar]
  9. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J.. 2001; Gill-associated virus of Penaeus monodon prawns: molecular evidence for the first invertebrate nidovirus. Advances in Experimental Medicine and Biology494:43–48
    [Google Scholar]
  10. de Groot R. J., Maduro J., Lenstra J. A., Horzinek M. C., van der Zeijst B. A. M., Spaan W. J. M.. 1987a; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J Gen Virol68:2639–2646
    [Google Scholar]
  11. de Groot R. J., Luytjes W., Horzinek M. C., van der Zeijst B. A. M., Spann W. J. M., Lenstra J. A.. 1987b; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol196:963–966
    [Google Scholar]
  12. Diano M., Le Bivic A., Hirn M.. 1998; Raising polyclonal antibodies using nitrocellulose-bound antigen. Methods Mol Biol80:5–13
    [Google Scholar]
  13. Duarte M., Laude H.. 1994; Sequence of the spike protein of the porcine epidemic diarrhoea virus. J Gen Virol75:1195–1200
    [Google Scholar]
  14. Figueroa-Soto C. G., de la Barca A. M. C., Vazquez-Moreno L., Higuera-Ciapara I., Yepiz-Plaascencia G.. 1997; Purification of hemocyanin from white shrimp ( Penaeus vannamei Boone) by immobilized metal affinity chromatography. Comp Biochem Physiol117B:203–208
    [Google Scholar]
  15. Flegel T. W.. 1997; Major viral diseases of the black tiger prawn ( Penaeus monodon ) in Thailand. World J Microbiol Biotechnol13:433–442
    [Google Scholar]
  16. Grosse B., Siddell S. G.. 1994; Single amino acid changes in the S2 subunit of the MHV surface glycoprotein confer resistance to neutralization by S1-specific monoclonal antibody. Virology202:814–824
    [Google Scholar]
  17. Hansen J. E., Lund O., Rapacki K., Brunak S.. 1997; o-glycbase version 2.0 – a revised database of O-glycosylated proteins. Nucleic Acids Res25:278–282
    [Google Scholar]
  18. Krogh A., Laarsson B., von Heijne G., Sonnhammer E. L. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  19. Kubo H., Yamada Y. K., Taguchi F.. 1994; Localization of neutralization epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol68:5403–5410
    [Google Scholar]
  20. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  21. Limsuwan C.. 1991; Handbook for Cultivation of Black Tiger Prawns . Bangkok: Tansetakit Co. Ltd; (in Thai)
  22. Loh P. C., Tapay L. M., Lu Y., Nadala E. C. Jr. 1997; Viral pathogens of the penaeid shrimp. Adv Virus Res48:263–312
    [Google Scholar]
  23. Luo Z., Matthews A. M., Weiss S. R.. 1999; Amino acid substitutions within the leucine zipper domain of the murine coronavirus spike protein cause defects in oligomerization and the ability to induce cell-to-cell fusion. J Virol73:8152–8159
    [Google Scholar]
  24. Mounir S., Talbot P.. 1993; Molecular characterization of the S protein gene of human coronavirus OC43. J Gen Virol74:1981–1987
    [Google Scholar]
  25. Murray M. C., Bhavanadan V. P., Davidson E. E.. 1989; Modification of sialyl residue of glycoconjugates by reductive amination: characterization of the modified sialic acids. Carbohydr Res186:255–265
    [Google Scholar]
  26. Nadala E. C. B., Tappy L. M., Loh P. C.. 1997; Yellow-head virus: a rhabdovirus-like pathogen of penaeid shrimp. Dis Aquat Org31:141–146
    [Google Scholar]
  27. Phillips J. J., Chua M. M., Lavi E., Weiss S. R.. 1999; Pathogenesis of MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol73:7752–7760
    [Google Scholar]
  28. Racusen D.. 1979; Glycoprotein detection in polyacrylamide gel with thymol and sulfuric acid. Anal Biochem99:474–476
    [Google Scholar]
  29. Rottier P. J. M.. 1995; The coronavirus membrane glycoprotein. In The Coronaviridae pp 115–139 Edited by Siddell S. G.. New York: Plenum Press;
    [Google Scholar]
  30. Sittidilokratna N., Hodgson R. A. J., Panyim S., Cowley J. A., Jitrapakdee S., Boonsaeng V., Walker P. J.. 2002; The complete ORF1b -gene sequence indicates yellow head virus is an invertebrate nidovirus. Dis Aquat Org50:87–93
    [Google Scholar]
  31. Snijder E. J., Horzinek M. C.. 1995; The molecular biology of toroviruses. In The Coronaviridae pp 219–238 Edited by Siddell S. G.. New York: Plenum Press;
    [Google Scholar]
  32. Spaan W., Cavanagh D., Horzinek M. C.. 1988; Coronavirus structure and genome expression. J Gen Virol69:2939–2952
    [Google Scholar]
  33. Sturman L. S., Ricard C. S., Holmes K. V.. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol56:904–911
    [Google Scholar]
  34. Suzuki H., Taguchi F.. 1996; Analysis of the receptor binding site of murine coronavirus spike glycoprotein. J Virol70:2632–2636
    [Google Scholar]
  35. Tang K. F.-J., Lightner D. V.. 1998; A yellow head virus probe: application to in situ hybridization and determination of its nucleotide sequence. Dis Aquat Org35:165–173
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. L.. 1994; clustal w: improved sensitivity of the progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choices. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  37. Wang Y.-C., Chang P.-S.. 2000; Yellow head virus infection in the giant tiger prawn Penaeus monodon cultured in Taiwan. Fish Pathol35:1–10
    [Google Scholar]
  38. Wongteerasupaya C., Sriurairatana S., Vicker J. E., Akrajamorn S., Boonsaeng V., Panyim S., Tassanakajon A., Withyachumnarnkul B., Flegel T. W.. 1995; Yellow-head virus of Penaeus monodon is an RNA virus. Dis Aquat Org22:45–50
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18811-0
Loading
/content/journal/jgv/10.1099/vir.0.18811-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error