1887

Abstract

We have investigated the genetic determinants responsible for the filamentous morphology of influenza A viruses, a property characteristic of primary virus isolates. A plasmid-based reverse genetics system was used to transfer the M segment of influenza A/Udorn/72 (H3N2) virus into influenza A/WSN/33 (H1N1) virus. While WSN virions display spherical morphology, recombinant WSN-Mud virus acquired the ability of the parental Udorn strain to form filamentous virus particles. This was determined by immunofluorescence studies in infected MDCK cells and by electron microscopy of purified virus particles. To determine the gene product within the M segment responsible for filamentous virus morphology, we generated four recombinant viruses carrying different sets of M1 and M2 genes from WSN or Udorn strains in a WSN background. These studies revealed that the M1 gene of Udorn, independently of the origin of the M2 gene, conferred filamentous budding properties and filamentous virus morphology to the recombinant viruses. We also constructed two WSN viruses encoding chimeric M1 proteins containing the amino-terminal 1–162 amino acids or the carboxy-terminal 163–252 amino acids of the Udorn M1 protein. Neither of these two viruses acquired filamentous phenotypes, indicating that both amino- and carboxy-terminal domains of the M1 protein contribute to filamentous virus morphology. We next rescued seven mutant WSN-M1ud viruses containing Udorn M1 proteins carrying single amino acid substitutions corresponding to the seven amino acid differences with the M1 protein of WSN virus. Characterization of these recombinant viruses revealed that amino acid residues 95 and 204 are critical in determining filamentous virus particle formation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18803-0
2003-03-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/3/vir840517.html?itemId=/content/journal/jgv/10.1099/vir.0.18803-0&mimeType=html&fmt=ahah

References

  1. Ali, A., Avalos, R. T., Ponimaskin, E. & Nayak, D. P. ( 2000; ). Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol 74, 8709–8719.[CrossRef]
    [Google Scholar]
  2. Arzt, S., Baudin, F., Barge, A., Timmins, P., Burmeister, W. P. & Ruigrok, R. W. ( 2001; ). Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology 279, 439–446.[CrossRef]
    [Google Scholar]
  3. Avalos, R. T., Yu, Z. & Nayak, D. P. ( 1997; ). Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol 71, 2947–2958.
    [Google Scholar]
  4. Basler, C. F., Reid, A. H., Dybing, J. K. & 9 other authors ( 2001; ). Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proc Natl Acad Sci U S A 98, 2746–2751.[CrossRef]
    [Google Scholar]
  5. Baudin, F., Petit, I., Weissenhorn, W. & Ruigrok, R. W. ( 2001; ). In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology 281, 102–108.[CrossRef]
    [Google Scholar]
  6. Bucher, D. J., Kharitonenkov, I. G., Zakomirdin, J. A., Grigoriev, V. B., Klimenko, S. M. & Davis, J. F. ( 1980; ). Incorporation of influenza virus M-protein into liposomes. J Virol 36, 586–590.
    [Google Scholar]
  7. Choppin, P. W., Murphy, J. S. & Tamm, I. ( 1960; ). Studies of two kinds of virus particles which comprise influenza A virus strains. III. Morphological and functional traits. J Exp Med 112, 945–952.[CrossRef]
    [Google Scholar]
  8. Chu, C. M., Dawson, I. M. & Elford, W. J. ( 1949; ). Filamentous forms associated with newly isolated influenza virus. Lancet i, 602–603.
    [Google Scholar]
  9. Cox, J. C., Hampson, A. W. & Hamilton, R. C. ( 1980; ). An immunofluorescence study of influenza virus filament formation. Arch Virol 63, 275–284.[CrossRef]
    [Google Scholar]
  10. Elster, C., Larsen, K., Gagnon, J., Ruigrok, R. W. H. & Baudin, F. ( 1997; ). Influenza virus M1 protein binds to RNA through its nuclear localization signal. J Gen Virol 78, 1589–1596.
    [Google Scholar]
  11. Enami, M. & Enami, K. ( 1996; ). Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol 70, 6653–6657.
    [Google Scholar]
  12. Fodor, E., Devenish, L., Engelhardt, O. G., Palese, P., Brownlee, G. G. & García-Sastre, A. ( 1999; ). Rescue of influenza A virus from recombinant DNA. J Virol 73, 9679–9682.
    [Google Scholar]
  13. Fujiyoshi, Y., Kume, N. P., Sakata, K. & Sato, S. B. ( 1994; ). Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J 13, 318–326.
    [Google Scholar]
  14. García-Sastre, A., Muster, T., Barclay, W. S., Percy, N. & Palese, P. ( 1994; ). Use of a mammalian internal ribosomal entry site element for expression of a foreign protein by a transfectant influenza virus. J Virol 68, 6254–6261.
    [Google Scholar]
  15. Gomez-Puertas, P., Albo, C., Perez-Pastrana, E., Vivo, A. & Portela, A. ( 2000; ). Influenza virus matrix protein is the major driving force in virus budding. J Virol 74, 11538–11547.[CrossRef]
    [Google Scholar]
  16. Harris, A., Forouhar, F., Qiu, S., Sha, B. & Luo, M. ( 2001; ). The crystal structure of the influenza matrix protein M1 at neutral pH: M1–M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289, 34–44.[CrossRef]
    [Google Scholar]
  17. Herz, C., Stavnezer, E., Krug, R. M. & Gurney, T. ( 1981; ). Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 26, 391–400.[CrossRef]
    [Google Scholar]
  18. Hughey, P. G., Roberts, P. C., Holsinger, L. J., Zebedee, S. L., Lamb, R. A. & Compans, R. W. ( 1995; ). Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212, 411–421.[CrossRef]
    [Google Scholar]
  19. Inglis, S. C. & Brown, C. M. ( 1981; ). Spliced and unspliced RNAs encoded by virion RNA segment 7 of influenza virus. Nucleic Acids Res 9, 2727–2740.[CrossRef]
    [Google Scholar]
  20. Jackson, D. A., Caton, A. J., McCready, S. J. & Cook, P. R. ( 1982; ). Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature 296, 366–368.[CrossRef]
    [Google Scholar]
  21. Jin, H., Leser, G. P., Zhang, J. & Lamb, R. A. ( 1997; ). Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16, 1236–1247.[CrossRef]
    [Google Scholar]
  22. Kilbourne, E. D. & Murphy, J. S. ( 1960; ). Genetic studies of influenza viruses. J Exp Med 111, 387–405.[CrossRef]
    [Google Scholar]
  23. Klenk, H. D., Slenczka, W. & Feldmann, H. ( 1994; ). Marburg and Ebola viruses. In Encyclopedia of Virology, pp. 827–832. Edited by R. G. Webster & A. Granoff. San Diego, CA: Academic Press.
  24. Kretzschmar, E., Bui, M. & Rose, J. K. ( 1996; ). Membrane association of influenza virus matrix protein does not require specific hydrophobic domains or the viral glycoproteins. Virology 220, 37–45.[CrossRef]
    [Google Scholar]
  25. Lamb, R. A. & Choppin, P. W. ( 1983; ). The gene structure and replication of influenza virus. Annu Rev Biochem 52, 467–506.[CrossRef]
    [Google Scholar]
  26. Lamb, R. A., Lai, C. J. & Choppin, P. W. ( 1981; ). Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci U S A 78, 4170–4174.[CrossRef]
    [Google Scholar]
  27. Latham, T. & Galarza, J. M. ( 2001; ). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol 75, 6154–6165.[CrossRef]
    [Google Scholar]
  28. Martin, K. & Helenius, A. ( 1991; ). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117–130.[CrossRef]
    [Google Scholar]
  29. Neumann, G., Watanabe, T., Ito, H. & 9 other authors. ( 1999; ). Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96, 9345–9350.[CrossRef]
    [Google Scholar]
  30. Nishimura, H., Hara, M., Sugawara, K., Kitame, F., Takiguchi, K., Umetsu, Y., Tonosaki, A. & Nakamura, K. ( 1990; ). Characterization of the cord-like structures emerging from the surface of influenza C virus-infected cells. Virology 179, 179–188.[CrossRef]
    [Google Scholar]
  31. Noda, T., Sagara, H., Suzuki, E., Takada, A., Kida, H. & Kawaoka, Y. ( 2002; ). Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol 76, 4855–4865.[CrossRef]
    [Google Scholar]
  32. O'Neill, R. E., Talon, J. & Palese, P. ( 1998; ). The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17, 288–296.[CrossRef]
    [Google Scholar]
  33. Pleschka, S., Jaskunas, R., Engelhardt, O. G., Zurcher, T., Palese, P. & García-Sastre, A. ( 1996; ). A plasmid-based reverse genetics system for influenza A virus. J Virol 70, 4188–4192.
    [Google Scholar]
  34. Roberts, P. C. & Compans, R. W. ( 1998; ). Host cell dependence of viral morphology. Proc Natl Acad Sci U S A 95, 5746–5751.[CrossRef]
    [Google Scholar]
  35. Roberts, S. R., Compans, R. W. & Wertz, G. W. ( 1995; ). Respiratory syncytial virus matures at the apical surfaces of polarized epithelial cells. J Virol 69, 2667–2673.
    [Google Scholar]
  36. Roberts, P. C., Lamb, R. A. & Compans, R. W. ( 1998; ). The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology 240, 127–137.[CrossRef]
    [Google Scholar]
  37. Ruigrok, R. W., Barge, A., Durrer, P., Brunner, J., Ma, K. & Whittaker, G. R. ( 2000; ). Membrane interaction of influenza virus M1 protein. Virology 267, 289–298.[CrossRef]
    [Google Scholar]
  38. Sha, B. & Luo, M. ( 1997; ). Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Biol 4, 239–244.[CrossRef]
    [Google Scholar]
  39. Shih, S. R. & Krug, R. M. ( 1996; ). Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15, 5415–5427.
    [Google Scholar]
  40. Shih, S. R., Nemeroff, M. E. & Krug, R. M. ( 1995; ). The choice of alternative 5′ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci U S A 92, 6324–6328.[CrossRef]
    [Google Scholar]
  41. Smirnov, Y. A., Kuznetsova, M. A. & Kaverin, N. V. ( 1991; ). The genetic aspects of influenza virus filamentous particle formation. Arch Virol 118, 279–284.[CrossRef]
    [Google Scholar]
  42. Watanabe, K., Handa, H., Mizumoto, K. & Nagata, K. ( 1996; ). Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol 70, 241–247.
    [Google Scholar]
  43. Yao, Q. & Compans, R. W. ( 2000; ). Filamentous particle formation by human parainfluenza virus type 2. J Gen Virol 81, 1305–1312.
    [Google Scholar]
  44. Yasuda, J., Nakada, S., Kato, A., Toyoda, T. & Ishihama, A. ( 1993; ). Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology 196, 249–255.[CrossRef]
    [Google Scholar]
  45. Ye, Z. P., Pal, R., Fox, J. W. & Wagner, R. R. ( 1987; ). Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol 61, 239–246.
    [Google Scholar]
  46. Ye, Z., Liu, T., Offringa, D. P., McInnis, J. & Levandowski, R. A. ( 1999; ). Association of influenza virus matrix protein with ribonucleoproteins. J Virol 73, 7467–7473.
    [Google Scholar]
  47. Zebedee, S. L. & Lamb, R. A. ( 1989; ). Nucleotide sequences of influenza A virus RNA segment 7: a comparison of five isolates. Nucleic Acids Res 17, 2870.[CrossRef]
    [Google Scholar]
  48. Zhang, J. & Lamb, R. A. ( 1996; ). Characterization of the membrane association of the influenza virus matrix protein in living cells. Virology 225, 255–266.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18803-0
Loading
/content/journal/jgv/10.1099/vir.0.18803-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error