1887

Abstract

The rotavirus genome encodes two glycoproteins, one structural (VP7) and one non-structural (NSP4), both of which mature and remain in the endoplasmic reticulum (ER). While three amino acids in the N terminus have been proposed to function as a retention signal for VP7, no information is yet available on how NSP4 remains associated with the ER. In this study, we have investigated the ER retention motif of NSP4 by producing various C-terminal truncations. Deleting the C terminus by 52 amino acids did not change the intracellular distribution of NSP4, but an additional deletion of 38 amino acids diminished the ER retention and resulted in the expression of NSP4 on the cell surface. Brefeldin A treatment prevented NSP4 from reaching the cell surface, suggesting that C-terminal truncated plasma membrane NSP4 is transported through the normal secretory pathway. On the basis of these results, we propose that the region between amino acids 85 and 123 in the cytoplasmic region of NSP4 are involved in ER retention.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18786-0
2003-04-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840875.html?itemId=/content/journal/jgv/10.1099/vir.0.18786-0&mimeType=html&fmt=ahah

References

  1. Andersson A. M., Pettersson R. F.. 1998; Targeting of a short peptide derived from the cytoplasmic tail of the G1 membrane glycoprotein of Uukuniemi virus (Bunyaviridae) to the Golgi complex. J Virol72:9585–9596
    [Google Scholar]
  2. Au K. S., Chan W. K., Burns J. W., Estes M. K.. 1989; Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol63:4553–4562
    [Google Scholar]
  3. Ball J. M., Tian P., Zeng C. Q., Morris A. P., Estes M. K.. 1996; Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein [see comments]. Science272:101–104
    [Google Scholar]
  4. Bellamy A. R., Both G. W.. 1990; Molecular biology of rotaviruses. Adv Virus Res38:1–43
    [Google Scholar]
  5. Berglund P., Sjoberg M., Garoff H., Atkins G. J., Sheahan B. J., Liljestrom P.. 1993; Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Biotechnology11:916–920
    [Google Scholar]
  6. Bergmann C. C., Maass D., Poruchynsky M. S., Atkinson P. H., Bellamy A. R.. 1989; Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J8:1695–1703
    [Google Scholar]
  7. Chan W. K., Au K. S., Estes M. K.. 1988; Topography of the simian rotavirus nonstructural glycoprotein (NS28) in the endoplasmic reticulum membrane. Virology164:435–442
    [Google Scholar]
  8. Chen S. Y., Matsuoka Y., Compans R. W.. 1991; Assembly and polarized release of Punta Toro virus and effects of brefeldin A. J Virol65:1427–1439
    [Google Scholar]
  9. Cocquerel L., Meunier J. C., Pillez A., Wychowski C., Dubuisson J.. 1998; A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. J Virol72:2183–2191
    [Google Scholar]
  10. Cocquerel L., Duvet S., Meunier J. C., Pillez A., Cacan R., Wychowski C., Dubuisson J.. 1999; The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. J Virol73:2641–2649
    [Google Scholar]
  11. Estes M. K., Cohen J.. 1989; Rotavirus gene structure and function. Microbiol Rev53:410–449
    [Google Scholar]
  12. Jackson M. R., Nilsson T., Peterson P. A.. 1990; Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J9:3153–3162
    [Google Scholar]
  13. Jackson M. R., Nilsson T., Peterson P. A.. 1993; Retrieval of transmembrane proteins to the endoplasmic reticulum. J Cell Biol121:317–333
    [Google Scholar]
  14. Jourdan N., Maurice M., Delautier D., Quero A. M., Servin A. L., Trugnan G.. 1997; Rotavirus is released from the apical surface of cultured human intestinal cells through nonconventional vesicular transport that bypasses the Golgi apparatus. J Virol71:8268–8278
    [Google Scholar]
  15. Kantanen M. L., Leinikki P., Kuismanen E.. 1995; Endoproteolytic cleavage of HIV-1 gp160 envelope precursor occurs after exit from the trans-Golgi network (TGN). Arch Virol140:1441–1449
    [Google Scholar]
  16. Lewis M. J., Pelham H. R.. 1992; Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell68:353–364
    [Google Scholar]
  17. Mallabiabarrena A., Jimenez M. A., Rico M., Alarcon B.. 1995; A tyrosine-containing motif mediates ER retention of CD3-epsilon and adopts a helix-turn structure. EMBO J14:2257–2268
    [Google Scholar]
  18. Mass D. R., Atkinson P. H.. 1994; Retention by the endoplasmic reticulum of rotavirus VP7 is controlled by three adjacent amino-terminal residues. J Virol68:366–378
    [Google Scholar]
  19. Mirazimi A., Svensson L.. 1998; Carbohydrates facilitate correct disulfide bond formation and folding of rotavirus VP7. J Virol72:3887–3892
    [Google Scholar]
  20. Mirazimi A., Svensson L.. 2000; ATP is required for correct folding and disulfide bond formation and folding of rotavirus VP7. J Virol74:8048–8052
    [Google Scholar]
  21. Mirazimi A., von Bonsdorff C. H., Svensson L.. 1996; Effect of brefeldin A on rotavirus assembly and oligosaccharide processing. Virology217:554–563
    [Google Scholar]
  22. Mirazimi A., Nilsson M., Svensson L.. 1998; The molecular chaperone calnexin interacts with the NSP4 enterotoxin of rotavirus in vivo and in vitro. J Virol72:8705–8709
    [Google Scholar]
  23. Munro S., Pelham H. R.. 1987; A C-terminal signal prevents secretion of luminal ER proteins. Cell48:899–907
    [Google Scholar]
  24. Newton K., Meyer J. C., Bellamy A. R., Taylor J. A.. 1997; Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J Virol71:9458–9465
    [Google Scholar]
  25. Nilsson T., Warren G.. 1994; Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol6:517–521
    [Google Scholar]
  26. Nilsson M., von Bonsdorff C. H., Weclewicz K., Cohen J., Svensson L.. 1998; Assembly of viroplasm and virus-like particles of rotavirus by a Semliki Forest virus replicon. Virology242:255–265
    [Google Scholar]
  27. Nilsson T., Jackson M., Peterson P. A.. 1989; Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell58:707–718
    [Google Scholar]
  28. Nuchtern J. G., Bonifacino J. S., Biddison W. E., Klausner R. D.. 1989; Brefeldin A implicates egress from endoplasmic reticulum in class I restricted antigen presentation. Nature339:223–226
    [Google Scholar]
  29. Paabo S., Bhat B. M., Wold W. S., Peterson P. A.. 1987; A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell50:311–317
    [Google Scholar]
  30. Pelham H. R.. 1988; Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J7:913–918
    [Google Scholar]
  31. Pelham H. R.. 1991; Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr Opin Cell Biol3:585–591
    [Google Scholar]
  32. Pelham H. R.. 1994; About turn for the COPs?. Cell79:1125–1127
    [Google Scholar]
  33. Petrie B. L.. 1983; Biological activity of rotavirus particles lacking glycosylated proteins. In Double-stranded RNA Viruses pp 145–156 Edited by Compans R. W., Bishop D. H. L.. New York: Elsevier;
    [Google Scholar]
  34. Pettersson R. F.. 1991; Protein localization and virus assembly at intracellular membranes. Curr Top Microbiol Immunol170:67–106
    [Google Scholar]
  35. Poruchynsky M. S., Tyndall C., Both G. W., Sato F., Bellamy A. R., Atkinson P. H.. 1985; Deletions into an NH2-terminal hydrophobic domain result in secretion of rotavirus VP7, a resident endoplasmic reticulum membrane glycoprotein. J Cell Biol101:2199–2209
    [Google Scholar]
  36. Poruchynsky M. S., Maass D. R., Atkinson P. H.. 1991; Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. J Cell Biol114:651–656
    [Google Scholar]
  37. Ruggeri F., Johansen K., Basile G., Kraehenbuhl J.-P., Svensson L.. 1998; Antirotavirus immunoglobulin A neutralizes virus in vitro after transcytosis through epithelial cells and protects infant mice from diarrhea. J Virol72:2708–2714
    [Google Scholar]
  38. Schutze M. P., Peterson P. A., Jackson M. R.. 1994; An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J13:1696–1705
    [Google Scholar]
  39. Svensson L., Dormitzer P. R., von Bonsdorff C. H., Maunula L., Greenberg H. B.. 1994; Intracellular manipulation of disulfide bond formation in rotavirus proteins during assembly. J Virol68:5204–5215
    [Google Scholar]
  40. Tafazoli F., Zeng C. Q., Estes M. K., Magnusson K. E., Svensson L.. 2001; NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol75:1540–1546
    [Google Scholar]
  41. Taylor J. A., O'Brien J. A., Yeager M.. 1996; The cytoplasmic tail of NSP4, the endoplasmic reticulum-localized non-structural glycoprotein of rotavirus, contains distinct virus binding and coiled coil domains. EMBO J15:4469–4476
    [Google Scholar]
  42. Tian P., Estes M. K., Hu Y., Ball J. M., Zeng C. Q., Schilling W. P.. 1995; The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol69:5763–5772
    [Google Scholar]
  43. Townsley F. M., Pelham H. R.. 1994; The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast. Eur J Cell Biol64:211–216
    [Google Scholar]
  44. Weclewicz K., Kristensson K., Greenberg H. B., Svensson L.. 1993a; The endoplasmic reticulum-associated VP7 of rotavirus is targeted to axons and dendrites in polarized neurons. J Neurocytol22:616–626
    [Google Scholar]
  45. Weclewicz K., Svensson L., Billger M., Holmberg K., Wallin M., Kristensson K.. 1993b; Microtubule-associated protein 2 appears in axons of cultured dorsal root ganglia and spinal cord neurons after rotavirus infection. J Neurosci Res36:173–182
    [Google Scholar]
  46. Xu A., Bellamy A. R., Taylor J. A.. 2000; Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules. EMBO J19:6465–6474
    [Google Scholar]
  47. Zhang M., Zeng C. Q., Morris A. P., Estes M. K.. 2000; A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol74:11663–11670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18786-0
Loading
/content/journal/jgv/10.1099/vir.0.18786-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error