1887

Abstract

Co-infection of a host cell by two unrelated enveloped viruses can lead to the production of pseudotypes: virions containing the genome of one virus but the envelope proteins of both viruses. The selection of components during virus assembly must therefore be flexible enough to allow the incorporation of unrelated viral membrane proteins, yet specific enough to exclude the bulk of host proteins. This apparent contradiction has been termed the pseudotypic paradox. There is mounting evidence that lipid rafts play a role in the assembly pathway of non-icosahedral, enveloped viruses. Viral components are concentrated initially in localized regions of the plasma membrane via their interaction with lipid raft domains. Lateral interactions of viral structural proteins amplify the changes in local lipid composition which in turn enhance the concentration of viral proteins in the rafts. An affinity for lipid rafts may be the common feature of enveloped virus proteins that leads to the formation of pseudotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18779-0
2003-04-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840757.html?itemId=/content/journal/jgv/10.1099/vir.0.18779-0&mimeType=html&fmt=ahah

References

  1. Ahn A., Gibbons D. L., Kielian M.. 2002; The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J Virol76:3267–3275
    [Google Scholar]
  2. Aloia R. C., Jensen F. C., Curtain C. C., Mobley P. W., Gordon L. M.. 1988; Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sci U S A85:900–904
    [Google Scholar]
  3. Aloia R. C., Tian H., Jensen F. C.. 1993; Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci U S A90:5181–5185
    [Google Scholar]
  4. Altstein A. D., Zhdanov V. M., Omelchenko T. N., Dzagurov S. G., Miller G. G., Závada J.. 1976; Phenotypic mixing of vesicular stomatitis virus and D-type oncornavirus. Int J Cancer17:780–784
    [Google Scholar]
  5. Baker T. S., Olson N. H., Fuller S. D.. 1999; Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev63:862–922
    [Google Scholar]
  6. Barman S., Nayak D. P.. 2000; Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. J Virol74:6538–6545
    [Google Scholar]
  7. Bavari S., Bosio C. M., Wiegand E.. 7 other authors 2002; Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med195:593–602
    [Google Scholar]
  8. Benting J., Rietveld A., Ansorge I., Simons K.. 1999; Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro . FEBS Lett462:47–50
    [Google Scholar]
  9. Boggs J. M., Wang H.. 2001; Effect of liposomes containing cerebroside and cerebroside sulfate on cytoskeleton of cultured oligodendrocytes. J Neurosci Res66:242–253
    [Google Scholar]
  10. Bolognesi D. P.. 1974; Structural components of RNA tumor viruses. Adv Virus Res19:315–359
    [Google Scholar]
  11. Brown D.. 1994; GPI-anchored proteins and detergent-resistant membrane domains. Braz J Med Biol Res27:309–315
    [Google Scholar]
  12. Brown R. E.. 1998; Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci111:1–9
    [Google Scholar]
  13. Brown D. A., Rose J. K.. 1992; Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell68:533–544
    [Google Scholar]
  14. Brown D. A., London E.. 1998; Structure and origin of ordered lipid domains in biological membranes. J Membr Biol164:103–114
    [Google Scholar]
  15. Brown D. R., Fan L., Jones J., Bryan J.. 1994; Colocalization of human papillomavirus type 11 E1E4 and L1 proteins in human foreskin implants grown in athymic mice. Virology201:46–54
    [Google Scholar]
  16. Brown G., Rixon H. W., Sugrue R. J.. 2002; Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol83:1841–1850
    [Google Scholar]
  17. Buser C. A., Sigal C. T., Resh M. D., McLaughlin S.. 1994; Membrane binding of myristoylated peptides corresponding to the NH2 terminus of Src. Biochemistry33:13093–13101
    [Google Scholar]
  18. Calafat J., Janssen H., Demant P., Hilgers J., Závada J.. 1983; Specific selection of host cell glycoproteins during assembly of murine leukaemia virus and vesicular stomatitis virus: presence of Thy-1 glycoprotein and absence of H-2, Pgp-1 and T-200 glycoproteins on the envelopes of these virus particles. J Gen Virol64:1241–1253
    [Google Scholar]
  19. Cheng R. H., Kuhn R. J., Olson N. H., Rossmann M. G., Choi H.-K., Smith T. J., Baker T. S.. 1995; Nucleocapsid and glycoprotein organization in an enveloped virus. Cell80:621–630
    [Google Scholar]
  20. Cheng P. C., Cherukuri A., Dykstra M., Malapati S., Sproul T., Chen M. R., Pierce S. K.. 2001; Floating the raft hypothesis: the roles of lipid rafts in B cell antigen receptor function. Semin Immunol13:107–114
    [Google Scholar]
  21. Cheong K. H., Zacchetti D., Schneeberger E. E., Simons K.. 1999; VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci U S A96:6241–6248
    [Google Scholar]
  22. Ding L., Derdowski A., Wang J.-J., Spearman P.. 2003; Independent segregation of human immunodeficiency virus type I Gag protein complexes and lipid rafts. J Virol77:1916–1926
    [Google Scholar]
  23. Dragunova J., Závada J.. 1979; Cross-neutralization between vesicular stomatitis virus type Indiana and Chandipura virus. Acta Virol23:319–328
    [Google Scholar]
  24. Drake D. R. III, Braciale T. J.. 2001; Cutting edge: lipid raft integrity affects the efficiency of MHC class I tetramer binding and cell surface TCR arrangement on CD8+ T cells. J Immunol166:7009–7013
    [Google Scholar]
  25. Drevot P., Langlet C., Guo X. J., Bernard A. M., Colard O., Chauvin J. P., Lasserre R., He H. T.. 2002; TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J21:1899–1908
    [Google Scholar]
  26. Dykstra M. L., Longnecker R., Pierce S. K.. 2001; Epstein–Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity14:57–67
    [Google Scholar]
  27. Ellens H., Bentz J., Mason D., Zhang F., White J. M.. 1990; Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry29:9697–9707
    [Google Scholar]
  28. Esser M. T., Graham D. R., Coren L. V., Trubey C. M., Bess J. W. Jr, Arthur L. O., Ott D. E., Lifson J. D.. 2001; Differential incorporation of CD45, CD80 (B7-1), CD86 (B7-2) and major histocompatibility complex class I and II molecules into human immunodeficiency virus type 1 virions and microvesicles: implications for viral pathogenesis and immune regulation. J Virol75:6173–6182
    [Google Scholar]
  29. Essex M., Cotter S. M., Carpenter J. L.. 1973; Feline virus-induced tumors and the immune response: recent developments. Am J Vet Res34:809–812
    [Google Scholar]
  30. Fischer N., Heinkelein M., Lindemann D., Enssle J., Baum C., Werder E., Zentgraf H., Muller J. G., Rethwilm A.. 1998; Foamy virus particle formation. J Virol72:1610–1615
    [Google Scholar]
  31. Fuller S. D.. 1987; Development of polarity in epithelial cells. Prog Appl Microcirc12:35–40
    [Google Scholar]
  32. Fuller S. D., von Bonsdorff C. H., Simons K.. 1984; Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell38:65–77
    [Google Scholar]
  33. Fuller S. D., Berriman J. A., Butcher S. J., Gowen B. E.. 1995; Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell81:715–725
    [Google Scholar]
  34. Fuller S. D., Wilk T., Gowen B. E., Kräusslich H.-G., Vogt V. M.. 1997; Cryo-electron microscopy reveals ordered domains within the immature HIV-1 particle. Curr Biol7:729–738
    [Google Scholar]
  35. Galbiati F., Razani B., Lisanti M. P.. 2001; Emerging themes in lipid rafts and caveolae. Cell106:403–411
    [Google Scholar]
  36. Gallo R. C., Wong-Staal F.. 1982; Retroviruses as etiologic agents of some animal and human leukemias and lymphomas and as tools for elucidating the molecular mechanism of leukemogenesis. Blood60:545–557
    [Google Scholar]
  37. Granger S. W., Fan H.. 2001; The helper virus envelope glycoprotein affects the disease specificity of a recombinant murine leukemia virus carrying a v- myc oncogene. Virus Genes22:311–319
    [Google Scholar]
  38. Griffiths G., Warren G., Quinn P., Mathieu-Costello O., Hoppeler H.. 1984; Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies. J Cell Biol98:2133–2141
    [Google Scholar]
  39. Gutman O., Danieli T., White J. M., Henis Y. I.. 1993; Effects of exposure to low pH on the lateral mobility of influenza hemagglutinin expressed at the cell surface: correlation between mobility inhibition and inactivation. Biochemistry32:101–106
    [Google Scholar]
  40. Harder T., Simons K.. 1997; Caveolae, DIGs and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol9:534–542
    [Google Scholar]
  41. Harder T., Scheiffele P., Verkade P., Simons K.. 1998; Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol141:929–942
    [Google Scholar]
  42. Hermida-Matsumoto L., Resh M. D.. 2000; Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol74:8670–8679
    [Google Scholar]
  43. Huang A. S., Palma E. L., Hewlett N., Roizman B.. 1974; Pseudotype formation between enveloped RNA and DNA viruses. Nature252:743–745
    [Google Scholar]
  44. Ito H., Watanabe S., Takada A., Kawaoka Y.. 2001; Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism and detection of neutralizing antibodies. J Virol75:1576–1580
    [Google Scholar]
  45. Jochen A., Hays J.. 1993; Purification of the major substrate for palmitoylation in rat adipocytes: N-terminal homology with CD36 and evidence for cell surface acylation. J Lipid Res34:1783–1792
    [Google Scholar]
  46. Johnson J. E., Rodgers W., Rose J. K.. 1998; A plasma membrane localization signal in the HIV-1 envelope cytoplasmic domain prevents localization at sites of vesicular stomatitis virus budding and incorporation into VSV virions. Virology251:244–252
    [Google Scholar]
  47. Kahn J. S., Schnell M. J., Buonocore L., Rose J. K.. 1999; Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology254:81–91
    [Google Scholar]
  48. Kahn J. S., Roberts A., Weibel C., Buonocore L., Rose J. K.. 2001; Replication-competent or attenuated, nonpropagating vesicular stomatitis viruses expressing respiratory syncytial virus (RSV) antigens protect mice against RSV challenge. J Virol75:11079–11087
    [Google Scholar]
  49. Kang Y., Stein C. S., Heth J. A.. 11 other authors 2002; In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River virus glycoproteins. J Virol76:9378–9388
    [Google Scholar]
  50. Kawasaki K., Yin J. J., Subczynski W. K., Hyde J. S., Kusumi A.. 2001; Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys J80:738–748
    [Google Scholar]
  51. Kielian M.. 1995; Membrane fusion and the alphavirus life cycle. Adv Virus Res45:113–151
    [Google Scholar]
  52. Kielian M., Helenius A.. 1986; Entry of alphaviruses. In The Togaviridae and Flaviviridae Edited by Schlesinger S.. New York: Plenum;
    [Google Scholar]
  53. Kielian M., Jungerwirth S., Sayad K. U., DeCandido S.. 1990; Biosynthesis, maturation and acid activation of the Semliki Forest virus fusion protein. J Virol64:4614–4624
    [Google Scholar]
  54. Lafont F., Simons K.. 2001; Raft-partitioning of the ubiquitin ligases Cbl and Nedd4 upon IgE-triggered cell signaling. Proc Natl Acad Sci U S A98:3180–3184
    [Google Scholar]
  55. Langlet C., Bernard A. M., Drevot P., He H. T.. 2000; Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol12:250–255
    [Google Scholar]
  56. Lee H., Song J. J., Kim E., Yun C. O., Choi J., Lee B., Kim J., Chang J. W., Kim J. H.. 2001; Efficient gene transfer of VSV-G pseudotyped retroviral vector to human brain tumor. Gene Ther8:268–273
    [Google Scholar]
  57. Lescar J., Roussel A., Wien M. W., Navaza J., Fuller S. D., Wengler G., Rey F. A.. 2001; The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell105:137–148
    [Google Scholar]
  58. Lindwasser O. W., Resh M. D.. 2001; Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol75:7913–7924
    [Google Scholar]
  59. Lisi A., Pozzi D., Grimaldi S.. 1993; Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Membr Biochem10:203–212
    [Google Scholar]
  60. Lu Y. E., Kielian M.. 2000; Semliki forest virus budding: assay, mechanisms and cholesterol requirement. J Virol74:7708–7719
    [Google Scholar]
  61. Luan P., Yang L., Glaser M.. 1995; Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in biological membranes. Biochemistry34:9874–9883
    [Google Scholar]
  62. Lukashevich I. S., Závada J.. 1982; Phenotypic mixing of vesicular stomatitis virus (VSV) with vaccinia virus. Acta Virol26:524
    [Google Scholar]
  63. Lusa S., Blom T. S., Eskelinen E. L., Kuismanen E., Mansson J. E., Simons K., Ikonen E.. 2001; Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J Cell Sci114:1893–1900
    [Google Scholar]
  64. Mancini E. J., Clarke M., Gowen B. E., Rutten T., Fuller S. D.. 2000; Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol Cell5:255–266
    [Google Scholar]
  65. Manie S. N., Debreyne S., Vincent S., Gerlier D.. 2000; Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol74:305–311
    [Google Scholar]
  66. Marschang P., Sodroski J., Wurzner R., Dierich M. P.. 1995; Decay-accelerating factor (CD55) protects human immunodeficiency virus type 1 from inactivation by human complement. Eur J Immunol25:285–290
    [Google Scholar]
  67. McSharry J. J., Compans R. W., Choppin P. W.. 1971; Proteins of vesicular stomatitis virus and of phenotypically mixed vesicular stomatitis virus-simian virus 5 virions. J Virol8:722–729
    [Google Scholar]
  68. Melkonian K. A., Ostermeyer A. G., Chen J. Z., Roth M. G., Brown D. A.. 1999; Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem274:3910–3917
    [Google Scholar]
  69. Monier S., Dietzen D. J., Hastings W. R., Lublin D. M., Kurzchalia T. V.. 1996; Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett388:143–149
    [Google Scholar]
  70. Nguyen D. H., Hildreth J. E.. 2000; Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol74:3264–3272
    [Google Scholar]
  71. Ono A., Freed E. O.. 2001; Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci U S A98:13925–13930
    [Google Scholar]
  72. Ott D. E.. 2002; Potential roles of cellular proteins in HIV-1. Rev Med Virol12:359–374
    [Google Scholar]
  73. Owens R. J., Rose J. K.. 1993; Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. J Virol67:360–365
    [Google Scholar]
  74. Pastorekova S., Zavadova Z., Kostal M., Babusikova O., Závada J.. 1992; A novel quasi-viral agent, MaTu, is a two-component system. Virology187:620–626
    [Google Scholar]
  75. Patzer E. J., Moore N. F., Barenholz Y., Shaw J. M., Wagner R. R.. 1978; Lipid organization of the membrane of vesicular stomatitis virus. J Biol Chem253:4544–4550
    [Google Scholar]
  76. Pessin J. E., Glaser M.. 1980; Budding of Rous sarcoma virus and vesicular stomatitis virus from localized lipid regions in the plasma membrane of chicken embryo fibroblasts. J Biol Chem255:9044–9050
    [Google Scholar]
  77. Pfeiffer S., Fuller S. D., Simons K.. 1985; Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin–Darby canine kidney cells. J Cell Biol101:470–476
    [Google Scholar]
  78. Pickl W. F., Pimentel-Muinos F. X., Seed B.. 2001; Lipid rafts and pseudotyping. J Virol75:7175–7183
    [Google Scholar]
  79. Quinn P., Griffiths G., Warren G.. 1984; Density of newly synthesized plasma membrane proteins in intracellular membranes. II. Biochemical studies. J Cell Biol98:2142–2147
    [Google Scholar]
  80. Rietveld A., Neutz S., Simons K., Eaton S.. 1999; Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem274:12049–12054
    [Google Scholar]
  81. Robbins S. M., Quintrell N. A., Bishop J. M.. 1995; Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol15:3507–3515
    [Google Scholar]
  82. Robinson L. J., Busconi L., Michel T.. 1995; Agonist-modulated palmitoylation of endothelial nitric oxide synthase. J Biol Chem270:995–998
    [Google Scholar]
  83. Rodgers W., Crise B., Rose J. K.. 1994; Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol14:5384–5391
    [Google Scholar]
  84. Rodriguez-Boulan E., Paskiet K. T., Sabatini D. D.. 1983; Assembly of enveloped viruses in Madin–Darby canine kidney cells: polarized budding from single attached cells and from clusters of cells in suspension. J Cell Biol96:866–874
    [Google Scholar]
  85. Roper K., Corbeil D., Huttner W. B.. 2000; Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol2:582–592
    [Google Scholar]
  86. Roth M. G., Compans R. W.. 1981; Delayed appearance of pseudotypes between vesicular stomatitis virus influenza virus during mixed infection of MDCK cells. J Virol40:848–860
    [Google Scholar]
  87. Roth M. G., Fitzpatrick J. P., Compans R. W.. 1979; Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: lack of a requirement for glycosylation of viral glycoproteins. Proc Natl Acad Sci U S A76:6430–6434
    [Google Scholar]
  88. Rousso I., Mixon M. B., Chen B. K., Kim P. S.. 2000; Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc Natl Acad Sci U S A97:13523–13525
    [Google Scholar]
  89. Scheiffele P., Roth M. G., Simons K.. 1997; Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J16:5501–5508
    [Google Scholar]
  90. Scheiffele P., Rietveld A., Wilk T., Simons K.. 1999; Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem274:2038–2044
    [Google Scholar]
  91. Schlesinger M. J., Schlesinger S.. 1986; Formation and assembly of alphavirus glycoproteins. In The Togaviridae and Flaviviridae Edited by Schlesinger S.. New York: Plenum;
    [Google Scholar]
  92. Schmidt M. F.. 1982; Acylation of viral spike glycoproteins: a feature of enveloped RNA viruses. Virology116:327–338
    [Google Scholar]
  93. Schmidt M. F.. 1984; The transfer of myristic and other fatty acids on lipid and viral protein acceptors in cultured cells infected with Semliki Forest and influenza virus. EMBO J3:2295–2300
    [Google Scholar]
  94. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K.. 1996; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A93:11359–11365
    [Google Scholar]
  95. Schnitzer T. J., Weiss R. A., Závada J.. 1977; Pseudotypes of vesicular stomatitis virus with the envelope properties of mammalian and primate retroviruses. J Virol23:449–454
    [Google Scholar]
  96. Schroeder R., London E., Brown D.. 1994; Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A91:12130–12134
    [Google Scholar]
  97. Sharkey M. F., Miyanohara A., Elam R. L., Friedmann T., Witztum J. L.. 1990; Post-transcriptional regulation of retroviral vector-transduced low density lipoprotein receptor activity. J Lipid Res31:2167–2178
    [Google Scholar]
  98. Sigal C. T., Zhou W., Buser C. A., McLaughlin S., Resh M. D.. 1994; Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A91:12253–12257
    [Google Scholar]
  99. Simons K., Garoff H.. 1980; The budding mechanisms of enveloped animal viruses. J Gen Virol50:1–21
    [Google Scholar]
  100. Simons K., Warren G.. 1984; Semliki Forest virus: a probe for membrane traffic in the animal cell. Adv Protein Chem36:79–132
    [Google Scholar]
  101. Simons K., Fuller S. D.. 1985; Cell surface polarity in epithelia. Annu Rev Cell Biol1:243–288
    [Google Scholar]
  102. Simons M., Kramer E. M., Thiele C., Stoffel W., Trotter J.. 2000; Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol151:143–154
    [Google Scholar]
  103. Singer S. J., Nicolson G. L.. 1972; The fluid mosaic model of the structure of cell membranes. Science175:720–731
    [Google Scholar]
  104. van der Goot F. G., Harder T.. 2001; Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol13:89–97
    [Google Scholar]
  105. VandenDriessche T., Naldini L., Collen D., Chuah M. K.. 2002; Oncoretroviral and lentiviral vector-mediated gene therapy. Methods Enzymol346:573–589
    [Google Scholar]
  106. Veit M., Reverey H., Schmidt M. F.. 1996a; Cytoplasmic tail length influences fatty acid selection for acylation of viral glycoproteins. Biochem J318:163–172
    [Google Scholar]
  107. Veit M., Sollner T. H., Rothman J. E.. 1996b; Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett385:119–123
    [Google Scholar]
  108. Verkade P., Harder T., Lafont F., Simons K.. 2000; Induction of caveolae in the apical plasma membrane of Madin–Darby canine kidney cells. J Cell Biol148:727–739
    [Google Scholar]
  109. Vogt V. M.. 1997; Retroviral virions and genomes. In Retroviruses pp 27–70 Edited by Coffin J. M., Hughes S. H., Varmus H. E.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  110. von Bonsdorff C.-H., Harrison S. C.. 1978; Hexagonal arrays from Sindbis virus membranes. J Virol28:578–583
    [Google Scholar]
  111. Wang J. K., Kiyokawa E., Verdin E., Trono D.. 2000; The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci U S A97:394–399
    [Google Scholar]
  112. Webb Y., Hermida-Matsumoto L., Resh M. D.. 2000; Inhibition of protein palmitoylation, raft localization and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem275:261–270
    [Google Scholar]
  113. White J. M., Danieli T., Henis Y. I., Melikyan G., Cohen F. S.. 1996; Membrane fusion by the influenza hemagglutinin: the fusion pore. Soc Gen Physiol Ser51:223–229
    [Google Scholar]
  114. Wilk T., Fuller S. D.. 1999; Towards the structure of the human immunodeficiency virus: divide and conquer. Curr Opin Struct Biol9:231–243
    [Google Scholar]
  115. Wilk T., Gowen B. E., Fuller S. D.. 1999; Actin associates with the nucleocapsid domain of the Gag polyprotein in the human immunodeficiency virus (HIV-1). J Virol73:1931–1940
    [Google Scholar]
  116. Wilk T., de Haas F., Wagner A., Rutten T., Fuller S., Flugel R. M., Lochelt M.. 2000; The intact retroviral Env glycoprotein of human foamy virus is a trimer. J Virol74:2885–2887
    [Google Scholar]
  117. Wilk T., Geiselhart V., Frech M., Fuller S. D., Flügel R. M., Löchelt M.. 2001a; Specific interaction of a novel foamy virus Env leader protein with the N-Terminal Gag domain. J Virol75:7995–8007
    [Google Scholar]
  118. Wilk T., Gross I., Gowen B. E., Rutten T., de Haas F., Welker R., Krausslich H. G., Boulanger P., Fuller S. D.. 2001b; Organization of immature human immunodeficiency virus type 1. J Virol75:759–771
    [Google Scholar]
  119. Winkler I., Bodem J., Haas L., Zemba M., Delius H., Flower R., Flugel R. M., Lochelt M.. 1997; Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses. J Virol71:6727–6741
    [Google Scholar]
  120. Witte O. N., Baltimore D.. 1977; Mechanism of formation of pseudotypes between vesicular stomatitis virus and murine leukemia virus. Cell11:505–511
    [Google Scholar]
  121. Yang C., Spies C. P., Compans R. W.. 1995; The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc Natl Acad Sci U S A92:9871–9875
    [Google Scholar]
  122. Yu S. F., Baldwin D. N., Gwynn S. R., Yendapalli S., Linial M. L.. 1996; Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science271:1579–1582
    [Google Scholar]
  123. Zajac V., Altaner C., Závada J., Cerny L.. 1980; Comparison of radioimmunoassay for internal protein of bovine leukemia virus with neutralization test employing VSV-BLV pseudotype. Neoplasma27:517–523
    [Google Scholar]
  124. Závada J.. 1972a; Pseudotypes of vesicular stomatitis virus with the coat of murine leukaemia and of avian myeloblastosis viruses. J Gen Virol15:183–191
    [Google Scholar]
  125. Závada J.. 1972b; VSV pseudotype particles with the coat of avian myeloblastosis virus. Nat New Biol240:122–124
    [Google Scholar]
  126. Závada J.. 1976; Viral pseudotypes and phenotypic mixing. Arch Virol50:1–15
    [Google Scholar]
  127. Závada J.. 1977; Assay methods for viral pseudotypes. In Methods of Virology pp 109–142 Edited by Koprowshi H.. New York: Academic Press;
    [Google Scholar]
  128. Závada J.. 1982; The pseudotypic paradox. J Gen Virol63:15–24
    [Google Scholar]
  129. Závada J., Rosenbergova M.. 1972; Phenotypic mixing of vesicular stomatitis virus with fowl plague virus. Acta Virol16:103–114
    [Google Scholar]
  130. Závada J., Zazadova Z., Malir A., Kocent A.. 1972; VSV pseudotype produced in cell line derived from human mammary carcinoma. Nat New Biol240:124–125
    [Google Scholar]
  131. Závada J., Cerny L., Altstein A. D., Zavadova Z.. 1978; Pseudotype particles of vesicular stomatitis virus with surface antigens of bovine leukaemia virus – VSV (BLV) – as a sensitive probe for detecting antibodies in the sera of spontaneously infected cattle. Acta Virol22:91–96
    [Google Scholar]
  132. Závada J., Cerny L., Zavadova Z., Bozonova J., Altstein A. D.. 1979; A rapid neutralization test for antibodies to bovine leukemia virus, with the use of rhabdovirus pseudotypes. J Natl Cancer Inst62:95–101
    [Google Scholar]
  133. Závada J., Russ G., Zavadova Z., Sabo A.. 1983; Vesicular stomatitis virus phenotypically mixed with retroviruses: an efficient detection method. Acta Virol27:110–118
    [Google Scholar]
  134. Zavadova Z., Závada J.. 1980; Pseudotypes of vesicular stomatitis virus with coat antigen of bovine leukaemia virus – VSV (BLV): antigenic surface mosaic and the roles of precipitating antibodies and polycations. Acta Virol24:166–174
    [Google Scholar]
  135. Zemba M., Wilk T., Rutten T., Wagner A., Flugel R. M., Lochelt M.. 1998; The carboxy-terminal p3Gag domain of the human foamy virus Gag precursor is required for efficient virus infectivity. Virology247:7–13
    [Google Scholar]
  136. Zhang J., Pekosz A., Lamb R. A.. 2000; Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol74:4634–4644
    [Google Scholar]
  137. Zhang W., Fisher B. R., Olson N. H., Strauss J. H., Kuhn R. J., Baker T. S.. 2002; Aura virus structure suggests that the T =4 organization is a fundamental property of viral structural proteins. J Virol76:7239–7246
    [Google Scholar]
  138. Zheng Y. H., Plemenitas A., Linnemann T., Fackler O. T., Peterlin B. M.. 2001; Nef increases infectivity of HIV via lipid rafts. Curr Biol11:875–879
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18779-0
Loading
/content/journal/jgv/10.1099/vir.0.18779-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error