Identification of neutral mutants surrounding two naturally occurring variants of Free

Abstract

Single point mutations in the pathogenicity domain of (PSTVd) can have a dramatic effect on disease expression, and only three substitutions are required for the spontaneous conversion of the type strain PSTVd-Intermediate to the rapidly replicating, highly pathogenic variant RG1 (Gruner ., , 60–69, 1995) . To identify available evolutionary pathways linking these two variants, we mutagenized five positions in an infectious cDNA copy of PSTVd-Intermediate and screened the resulting mixture of 768 sequences for neutral or near-neutral mutants. Numerical simulations based on the bioassay data indicate that the 23 variants recovered represent >80 % of all such sequences. RG1 was the only naturally occurring variant recovered, and the overall pattern of sequence changes observed indicates that PSTVd-Int occupies a comparatively steep peak within the fitness landscape.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18755-0
2003-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/3/vir840751.html?itemId=/content/journal/jgv/10.1099/vir.0.18755-0&mimeType=html&fmt=ahah

References

  1. Amari K., Gomez G., Myrta A., Di Terlizzi B., Pallás V. 2001; The molecular characterization of 16 new sequence variants of Hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule. J Gen Virol 82:953–962
    [Google Scholar]
  2. Ambrós S., Hernández C., Desvignes J. C., Flores R. 1998; Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implication of the existence of constraints limiting the heterogeneity of viroid quasispecies. J Virol 72:7397–7406
    [Google Scholar]
  3. Bush R. M., Bender C. A., Subbarao K., Cox N. J., Fitch W. M. 1999; Predicting the evolution of human influenza A. Science 286:1921–1925
    [Google Scholar]
  4. Eigen M. 1993; The origin of genetic information: viruses as models. Gene 135:37–47
    [Google Scholar]
  5. Eigen M., Biebricher C. K. 1988; Sequence space and quasispecies distribution. In RNA Genetics vol. III, Variability of RNA Genomes pp  211–245 Edited by Domingo E., Holland J. J., Ahlquist P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  6. Farci P., Shimoda A., Coiana A. 9 other authors 2000; The outcome of acute hepatitis C predicted by evolution of the viral quasispecies. Science 288:339–344
    [Google Scholar]
  7. Flores R., Di Serio F., Hernández C. 1997; Viroids: the noncoding genomes. Semin Virol 8:65–73
    [Google Scholar]
  8. Fontana W., Schuster P. 1998; Continuity in evolution: on the nature of transitions. Science 280:1451–1455
    [Google Scholar]
  9. Fraile A., Garcia-Arenal F. 1991; Secondary structure as a constraint on the evolution of a plant viral satellite RNA. J Mol Biol 221:1065–1069
    [Google Scholar]
  10. Góra-Sochacka A., Kierzek A., Candresse T., Zagórski W. 1997; The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA 3:68–74
    [Google Scholar]
  11. Gross H. J., Domdey H., Lossow C., Jank P., Raba M., Alberty H., Sänger H. L. 1978; Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature 273:203–208
    [Google Scholar]
  12. Gruner R., Fels A., Qu F., Zimmat R., Steger G., Riesner D. 1995; Interdependence of pathogenicity and replicability with potato spindle tuber viroid. Virology 209:60–69
    [Google Scholar]
  13. Hammond R. W. 1992; Analysis of the virulence modulating region of potato spindle tuber viroid (PSTVd) by site-directed mutagenesis. Virology 187:654–662
    [Google Scholar]
  14. Hu Y., Feldstein P. A., Bottino P. J., Owens R. A. 1996; Role of the variable domain in modulating potato spindle tuber viroid replication. Virology 219:45–56
    [Google Scholar]
  15. Huson D. H. 1998; SplitsTree: analysing and visualizing evolutionary data. Bioinformatics 14:68–73
    [Google Scholar]
  16. Hutton R. J., Broadbent P., Bevington K. B. 2000; Viroid dwarfing for high density citrus plantings. Hortic Rev 24:277–317
    [Google Scholar]
  17. Keese P., Symons R. H. 1985; Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A 82:4582–4586
    [Google Scholar]
  18. Kofalvi S. A., Marcos J. F., Cañizares M. C., Pallás V., Candresse T. 1997; Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. J Gen Virol 78:3177–3186
    [Google Scholar]
  19. Loss P., Schmitz M., Steger G., Riesner D. 1991; Formation of a thermodynamically metastable structure containing hairpin II is critical for infectivity of potato spindle tuber viroid RNA. EMBO J 10:719–727
    [Google Scholar]
  20. Luck R., Graf S., Steger G. 1999; ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res 27:4208–4217
    [Google Scholar]
  21. Matousek J. A., Patzak J., Orctová L., Schubert J., Vrba L., Steger G., Riesner D. 2001; The variability of hop latent viroid as induced upon heat treatment. Virology 287:349–358
    [Google Scholar]
  22. Meissner R., Jacobson Y., Melamed S., Levyatuv S., Shalev G., Ashri A., Elkind Y., Levy A. 1997; A new model system for tomato genetics. Plant J 12:1465–1472
    [Google Scholar]
  23. Owens R. A. 1999; Viroids. In Encyclopedia of Virology . , 2nd edn. pp  1928–1937 Edited by Granoff A., Webster R. G. New York: Academic Press;
  24. Owens R. A., Thompson S. M., Sieburth P. J., Garnsey S. M. 2003; Limited sequence randomization: testing a strategy to produce improved citrus viroid dwarfing agents. In Proceedings 14th Conference International Organization of Citrus Virologists Riverside,CA: IOCV (in press)
    [Google Scholar]
  25. Podleckis E. V., Hammond R. W., Hurtt S. W., Hadidi A. 1993; Chemiluminescent detection of potato and pome fruit viroids by digoxygenin-labelled dot blot and tissue blot hybridization. J Virol Methods 43:147–158
    [Google Scholar]
  26. Polivka H., Staub U., Gross H. J. 1996; Variation of viroid profiles in individual grapevine plants: novel grapevine yellow speckle viroid 1 mutants show alterations of hairpin I. J Gen Virol 77:155–161
    [Google Scholar]
  27. Qu F., Heinrich C. Loss P., Steger G., Tien P., Riesner D. 1993; Multiple pathways of reversion in viroids for conservation of structural elements. EMBO J 12:2129–2139
    [Google Scholar]
  28. Reidhaar-Olson J. F., Sauer R. T. 1988; Combinatorial cassette mutagenesis as a probe for the informational content of protein sequences. Science 241:53–57
    [Google Scholar]
  29. Sano T., Mimura R., Ohshima K. 2001; Phylogenetic analysis of hop and grapevine isolates of hop stunt viroid supports a grapevine origin for hop stunt disease. Virus Genes 22:53–59
    [Google Scholar]
  30. Schnölzer M., Haas B., Ramm K., Hofmann H., Sänger H. L. 1985; Correlation between structure and pathogenicity of potato spindle tuber viroid. EMBO J 4:2181–2190
    [Google Scholar]
  31. Shikata E. 1990; New viroids from Japan. Semin Virol 1:107–115
    [Google Scholar]
  32. Soong N. W., Nomura L., Pekrun K., Reed M., Sheppard L., Dawes G., Stemmer W. P. 2000; Molecular breeding of viruses. Nat Genet 25:436–439
    [Google Scholar]
  33. Swofford D. L. 1998 paup*. Phylogenetic analysis using parsimony (*and other methods) – version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18755-0
Loading
/content/journal/jgv/10.1099/vir.0.18755-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed