The BZLF1 promoter of Epstein–Barr virus is controlled by E box-/HI-motif-binding factors during virus latency Free

Abstract

The BZLF1 open reading frame of Epstein–Barr virus (EBV) encodes an important transactivator of replication. During latency, transcription of this gene is switched off. HI motifs have been shown to cause negative regulation of the promoter. Using yeast one-hybrid assays, we isolated the E box-binding protein, E2-2, interacting with these motifs. Electrophoretic mobility shift assays demonstrated that E2-2 binds to HI, HI and HI, which contain E box consensus binding sites. Deletion of the HI-associated E boxes and overexpression of E2-2 in transfection assays revealed that these elements act as repressors in lymphoid cells. In contrast, in epithelial cells they contribute to the increased responsiveness of the promoter to transactivation by the BZLF1 protein. The data presented are in accord with an alternative and exclusive binding of different cell type- and differentiation-specific factors, such as E2-2, to the HI-associated E boxes in lymphoid and epithelial cells. This implies a role in cell type-specific virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18740-0
2003-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840959.html?itemId=/content/journal/jgv/10.1099/vir.0.18740-0&mimeType=html&fmt=ahah

References

  1. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A. 1998; EBV persistence in memory B cells in vivo. Immunity 9:395–404
    [Google Scholar]
  2. Bain G., Gruenwald S., Murre C. 1993; E2A and E2-2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol Cell Biol 13:3522–3529
    [Google Scholar]
  3. Becker J., Leser U., Marschall M., Langford A., Jilg W., Gelderblom H., Reichart P., Wolf H. 1991; Expression of proteins encoded by Epstein–Barr virus trans-activator genes depends on the differentiation of epithelial cells in oral hairy leukoplakia. Proc Natl Acad Sci U S A 88:8332–8336
    [Google Scholar]
  4. Ben Bassat H., Goldblum N., Mitrani S. 7 other authors 1977; Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like” malignant lymphoma (line D.G.-75). Int J Cancer 19:27–33
    [Google Scholar]
  5. Church G. M., Ephrussi A., Gilbert W., Tonegawa S. 1985; Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature 313:798–801
    [Google Scholar]
  6. Daibata M., Humphreys R. E., Sairenji T. 1992; Phosphorylation of the Epstein–Barr virus BZLF1 immediate-early gene product ZEBRA. Virology 188:916–920
    [Google Scholar]
  7. Decker L. L., Klamen L. D., Thorley-Lawson D. A. 1996; Detection of the latent form of Epstein–Barr virus DNA in the peripheral blood of healthy individuals. J Virol 70:3286–3289
    [Google Scholar]
  8. Ephrussi A., Church G. M., Tonegawa S., Gilbert W. 1985; B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo . Science 227:134–140
    [Google Scholar]
  9. Flemington E., Speck S. 1990; Identification of phorbol ester response elements in the promoter of Epstein–Barr virus putative lytic switch gene BZLF1. J Virol 64:1217–1226
    [Google Scholar]
  10. Gutsch D., Holley Guthrie E., Zhang Q., Kenney S. 1993; NF-kB can physically interact with the Epstein–Barr virus Z protein and inhibit Z function. In XIII International Herpesvirus Workshop, July 25–30. 30
    [Google Scholar]
  11. Katz D. A., Baumann R. P., Sun R., Kolman J. L., Taylor N., Miller G. 1992).Viral; proteins associated with the Epstein–Barr virus transactivator, ZEBRA. Proc Natl Acad Sci U S A 89:378–382
    [Google Scholar]
  12. Kenney S. C., Holley Guthrie E., Quinlivan E. B., Gutsch D., Zhang Q., Bender T., Giot J. F., Sergeant A. 1992; The cellular oncogene c-myb can interact synergistically with the Epstein–Barr virus BZLF1 transactivator in lymphoid cells. Mol Cell Biol 12:136–146
    [Google Scholar]
  13. Kraus R. J., Mirocha S. J., Stephany H. M., Puchalski J. R., Mertz J. E. 2001; Identification of a novel element involved in regulation of the lytic switch BZLF1 gene promoter of Epstein–Barr virus. J Virol 75:867–877
    [Google Scholar]
  14. Miyashita E. M., Yang B., Lam K. M., Crawford D. H., Thorley Lawson D. A. 1995; A novel form of Epstein–Barr virus latency in normal B cells in vivo . Cell 80:593–601
    [Google Scholar]
  15. Montalvo E. A., Shi Y., Shenk T. E., Levine A. J. 1991; Negative regulation of the BZLF1 promoter of Epstein–Barr virus. J Virol 65:3647–3655
    [Google Scholar]
  16. Montalvo E. A., Cottam M., Hill S., Wang Y.-C. J. 1995; YY1 binds to and regulates cis -acting negative elements in the Epstein–Barr virus BZLF1 promoter. J Virol 69:4158–4165
    [Google Scholar]
  17. O'Riordan M., Grosschedl R. 1999; Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11:21–31
    [Google Scholar]
  18. Prang N., Wolf H., Schwarzmann F. 1995; Epstein–Barr virus lytic replication is controlled by a posttranscriptional mechanism of BZLF1. J Virol 69:2644–2648
    [Google Scholar]
  19. Prang N., Wolf H., Schwarzmann F. 1999; Latency of Epstein–Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1. J Med Virol 59:512–519
    [Google Scholar]
  20. Pscherer A., Dorflinger U., Kirfel J., Gawlas K., Ruschoff J., Buettner R., Schule R. 1996; The helix-loop-helix transcription factor SEF-2 regulates the activity of a novel initiator element in the promoter of the human somatostatin receptor II gene. EMBO J 15:6680–6690
    [Google Scholar]
  21. Ruf I. K., Rawlins D. R. 1995; Identification and characterization of ZIIBC, a complex formed by cellular factors and the ZII site of the Epstein–Barr virus BZLF1 promoter. J Virol 69:7648–7657
    [Google Scholar]
  22. Schwarzmann F., Prang N., Reichelt B., Rinkes B., Haist S., Marschall M., Wolf H. 1994; Negative cis-acting elements in the distal part of the promoter of Epstein–Barr virus trans-activator gene BZLF1. J Gen Virol 75:1999–2006
    [Google Scholar]
  23. Shen C. P., Kadesch T. 1995; B-cell-specific DNA binding by an E47 homodimer. Mol Cell Biol 15:4518–4524
    [Google Scholar]
  24. Shimizu N., Takada K. 1994; Analysis of the BZLF1 promoter of Epstein–Barr virus: identification of an anti-immunoglobulin response sequence. J Virol 67:3240–3245
    [Google Scholar]
  25. Sinclair A. J., Brimmell M., Farrell P. J. 1992; Reciprocal antagonism of steroid hormones and BZLF1 in switch between Epstein–Barr virus latent and productive cycle gene expression. J Virol 66:70–77
    [Google Scholar]
  26. Tierney R. J., Steven N., Young L. S., Rickinson A. B. 1994; Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 68:7374–7385
    [Google Scholar]
  27. Walling D. M., Perkins A. G., Webster-Cyriaque J., Resnick L., Raab-Traub N. 1994; The Epstein–Barr virus EBNA-2 gene in oral hairy leukoplakia: strain variation, genetic recombination, and transcriptional expression. J Virol 68:7918–7926
    [Google Scholar]
  28. Wang Y. C., Huang J. M., Montalvo E. A. 1997; Characterization of proteins binding to the ZII element in the Epstein–Barr virus BZLF1 promoter: transactivation by ATF1. Virology 227:323–330
    [Google Scholar]
  29. Young L. S., Lau R., Rowe M. 7 other authors 1991; Differentiation-associated expression of the Epstein–Barr virus BZLF1 transactivator protein in oral hairy leukoplakia. J Virol 65:2868–2874
    [Google Scholar]
  30. Zhang Q., Gutsch D., Kenney S. 1994; Functional and physical interaction between p53 and BZLF1: implications for Epstein–Barr virus latency. Mol Cell Biol 14:1929–1938
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18740-0
Loading
/content/journal/jgv/10.1099/vir.0.18740-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed