1887

Abstract

Feline immunodeficiency virus (FIV) is a worldwide-occurring lentivirus that severely impairs the immune function of infected domestic cats. Due to structural and biological similarities, FIV represents a promising model for human immunodeficiency virus (HIV) and AIDS. A major obstacle in developing vaccines against lentiviruses is their high mutation rate. Furthermore, mutations in target sequences provide a pitfall for molecular diagnostics. It is therefore important to determine the genetic diversity of lentiviruses in any region where vaccination or implementation of new diagnostic techniques are planned. This study presents a phylogenetic analysis of 30 FIV strains derived from Central Europe. In order to improve the reliability of genotyping, DNA from two different proviral genes was amplified and comparative phylogenetic trees were inferred. The highly coincident results point to the existence of extensive virus variation with the presence of at least two highly divergent subtypes of FIV in Austria and Germany.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18736-0
2003-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/5/vir841301.html?itemId=/content/journal/jgv/10.1099/vir.0.18736-0&mimeType=html&fmt=ahah

References

  1. Bachmann, M. H., Mathiason-Dubard, C., Learn, G. H., Rodrigo, A. G., Sodora, D. L., Mazzetti, P., Hoover, E. A. & Mullins, J. I. ( 1997; ). Genetic diversity of feline immunodeficiency virus: dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. J Virol 71, 4241–4253.
    [Google Scholar]
  2. Bendinelli, M., Pistello, M., Lombardi, S., Poli, A., Garzelli, C., Matteucci, D., Ceccherini-Nelli, L., Malvaldi, G. & Tozzini, F. ( 1995; ). Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clin Microbiol Rev 8, 87–112.
    [Google Scholar]
  3. Bigornia, L., Lockridge, K. M. & Sparger, E. E. ( 2001; ). Construction and in vitro characterization of attenuated feline immunodeficiency virus long terminal repeat mutant viruses. J Virol 75, 1054–1060.[CrossRef]
    [Google Scholar]
  4. Cammarota, G., Da Prato, L., Nicoletti, E., Matteucci, D., Bendinelli, M. & Pistello, M. ( 1996; ). Quantitation of feline immunodeficiency proviruses in doubly infected cats using competitive PCR and a fluorescence-based RFLP. J Virol Methods 62, 21–31.[CrossRef]
    [Google Scholar]
  5. Carpenter, M. A., Brown, E. W., MacDonald, D. W. & O'Brien, S. J. ( 1998; ). Phylogeographic patterns of feline immunodeficiency virus genetic diversity in the domestic cat. Virology 251, 234–243.[CrossRef]
    [Google Scholar]
  6. Elyar, J. S., Tellier, M. C., Soos, J. M. & Yamamoto, J. K. ( 1997; ). Perspectives on FIV vaccine development. Vaccine 15, 1437–1444.[CrossRef]
    [Google Scholar]
  7. English, R. V., Nelson, P., Johnson, C. M., Nasisse, M., Tompkins, W. A. & Tompkins, M. B. ( 1994; ). Development of clinical disease in cats experimentally infected with feline immunodeficiency virus. J Infect Dis 170, 543–552.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  9. Fitch, W. M. ( 1977; ). On the problem of discovering the most parsimonious tree. Am Nat 111, 223–257.[CrossRef]
    [Google Scholar]
  10. Graur, D. & Li, W.-H. ( 2000; ). Fundamentals of molecular evolution, 2nd edn. Edited by A. D. Sinauer & C. J. Wigg. Sunderland, MA: Sinauer Associates.
  11. Hosie, M. J., Osborne, R., Yamamoto, J. K., Neil, J. C. & Jarrett, O. ( 1995; ). Protection against homologous but not heterologous challenge induced by inactivated feline immunodeficiency virus vaccines. J Virol 69, 1253–1255.
    [Google Scholar]
  12. Hosie, M. J., Flynn, J. N., Rigby, M. A. & 9 other authors ( 1998; ). DNA vaccination affords significant protection against feline immunodeficiency virus infection without inducing detectable antiviral antibodies. J Virol 72, 7310–7319.
    [Google Scholar]
  13. Hosie, M. J., Willett, B. J., Klein, D., Dunsford, T. H., Cannon, C., Shimojima, M., Neil, J. C. & Jarrett, O. ( 2002; ). Evolution of replication efficiency following infection with a molecularly cloned feline immunodeficiency virus of low virulence. J Virol 76, 6062–6072.[CrossRef]
    [Google Scholar]
  14. Kakinuma, S., Motokawa, K., Hohdatsu, T., Yamamoto, J. K., Koyama, H. & Hashimoto, H. ( 1995; ). Nucleotide sequence of feline immunodeficiency virus: classification of Japanese isolates into two subtypes which are distinct from non-Japanese subtypes. J Virol 69, 3639–3646.
    [Google Scholar]
  15. Klein, D., Janda, P., Steinborn, R., Muller, M., Salmons, B. & Guenzburg, W. H. ( 1999; ). Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: influence of mismatches on quantification. Electrophoresis 20, 291–299.[CrossRef]
    [Google Scholar]
  16. Klein, D., Leutenegger, C. M., Bahula, C., Gold, P., Hofmann-Lehmann, R., Salmons, B., Lutz, H. & Guenzburg, W. H. ( 2001; ). Influence of preassay and sequence variations on viral load determination by a multiplex real-time reverse transcriptase-polymerase chain reaction for feline immunodeficiency virus. J Acquir Immune Defic Syndr 26, 8–20.[CrossRef]
    [Google Scholar]
  17. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  18. Leutenegger, C. M., Klein, D., Hofmann-Lehmann, R., Mislin, C., Hummel, U., Böni, J., Boretti, F., Guenzburg, W. H. & Lutz, H. ( 1999; ). Rapid feline immunodeficiency virus provirus quantitation by polymerase chain reaction using the TaqMan fluorogenic real-time detection system. J Virol Methods 78, 105–116.[CrossRef]
    [Google Scholar]
  19. Lockridge, K. M., Chien, M., Dean, G. A., Stefano Cole, K., Montelaro, R. C., Luciw, P. A. & Sparger, E. E. ( 2000; ). Protective immunity against feline immunodeficiency virus induced by inoculation with vif-deleted proviral DNA. Virology 273, 67–79.[CrossRef]
    [Google Scholar]
  20. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  21. Matteucci, D., Pistello, M., Mazzetti, P., Giannecchini, S., Del Mauro, D., Zaccaro, L., Bandecchi, P., Tozzini, F. & Bendinelli, M. ( 1996; ). Vaccination protects against in vivo-grown feline immunodeficiency virus even in the absence of detectable neutralizing antibodies. J Virol 70, 617–622.
    [Google Scholar]
  22. Pecoraro, M. R., Tomonaga, K., Miyazawa, T., Kawaguchi, Y., Sugita, S., Tohya, Y., Kai, C., Etcheverrigaray, M. E. & Mikami, T. ( 1996; ). Genetic diversity of Argentine isolates of feline immunodeficiency virus. J Gen Virol 77, 2031–2035.[CrossRef]
    [Google Scholar]
  23. Pedersen, N. C., Yamamoto, J. K., Ishida, T. & Hansen, H. ( 1989; ). Feline immunodeficiency virus infection. Vet Immunol Immunopathol 21, 111–129.[CrossRef]
    [Google Scholar]
  24. Pistello, M., Cammarota, G., Nicoletti, E., Matteucci, D., Curcio, M., Del Mauro, D. & Bendinelli, M. ( 1997; ). Analysis of the genetic diversity and phylogenetic relationship of Italian isolates of feline immunodeficiency virus indicates a high prevalence and heterogeneity of subtype B. J Gen Virol 78, 2247–2257.
    [Google Scholar]
  25. Pu, R., Coleman, J., Omori, M., Arai, M., Hohdatsu, T., Huang, C., Tanabe, T. & Yamamoto, J. K. ( 2001; ). Dual-subtype FIV vaccine protects cats against in vivo swarms of both homologous and heterologous subtype FIV isolates. AIDS 15, 1225–1237.[CrossRef]
    [Google Scholar]
  26. Rigby, M. A., Holmes, E. C., Pistello, M., Mackay, A., Brown, A. J. & Neil, J. C. ( 1993; ). Evolution of structural proteins of feline immunodeficiency virus: molecular epidemiology and evidence of selection for change. J Gen Virol 74, 425–436.[CrossRef]
    [Google Scholar]
  27. Robertson, D. L., Anderson, J. P., Bradac, J. A. & 17 other authors ( 1999; ). HIV-1 nomenclature proposal. http://hiv-web.lanl.gov/content/hiv-db/REVIEWS/reviews.html
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Salminen, M. O., Carr, J. K., Burke, D. S. & McCutchan, F. E. ( 1995; ). Identification of recombination breakpoints in HIV-1 by bootscanning. AIDS Res Hum Retroviruses 11, 1423–1425.[CrossRef]
    [Google Scholar]
  30. Sodora, D. L., Shpaer, E. G., Kitchell, B. E., Dow, S. W., Hoover, E. A. & Mullins, J. I. ( 1994; ). Identification of three feline immunodeficiency virus (FIV) env gene subtypes and comparison of the FIV and human immunodeficiency virus type 1 evolutionary patterns. J Virol 68, 2230–2238.
    [Google Scholar]
  31. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  32. Strimmer, K. & von Haeseler, A. ( 1997; ). Likelihood mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 94, 6815–6819.[CrossRef]
    [Google Scholar]
  33. Swofford, D. L. ( 2002; ). paup*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10. Sunderland, MA: Sinauer Associates.
  34. Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis, D. M. ( 1996; ). Phylogenetic inference. In Molecular Systematics, 2nd edn, pp. 407–543. Edited by D. M. Hillis, C. Moritz & B. K. Mable. Sunderland, MA: Sinauer Associates.
  35. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  36. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  37. Uhl, E. W., Heaton-Jones, T. G., Pu, R. & Yamamoto, J. K. ( 2002; ). FIV vaccine development and its importance to veterinary and human medicine: a review. FIV vaccine 2002 update and review. Vet Immunol Immunopathol 90, 113–132.[CrossRef]
    [Google Scholar]
  38. Xia, X. & Xie, Z. ( 2001; ). DAMBE: data analysis in molecular biology and evolution. J Hered 92, 371–373.[CrossRef]
    [Google Scholar]
  39. Yamamoto, J. K., Hohdatsu, T., Olmsted, R. A. & 7 other authors ( 1993; ). Experimental vaccine protection against homologous and heterologous strains of feline immunodeficiency virus. J Virol 67, 601–605.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18736-0
Loading
/content/journal/jgv/10.1099/vir.0.18736-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error