1887

Abstract

The non-classical major histocompatibility complex class I molecule HLA-G is expressed mainly by extravillous trophoblasts at the materno–foetal interface. HLA-G has been found to bind endogenously processed nonameric peptides but its function as a restriction element for a cytotoxic T cell response to viruses with tropism for trophoblastic cells has never been demonstrated. In this study, candidate viral peptides derived from human cytomegalovirus (HCMV) pp65 (UL83), which stabilized the HLA-G molecule on HLA-G-transfected T2 cells, were identified. The specific anti-pp65 cytotoxic T lymphocyte (CTL) response restricted by HLA-G in triple transgenic mice (HLA-G, human β2m, human CD8α) was then investigated by injection of dendritic cells loaded with synthetic pp65-derived peptides or by infection with canarypox virus expressing pp65. Results showed that CTLs from HLA-G mice have the capacity to kill target cells either infected with recombinant vaccinia viruses expressing pp65 or loaded with specific pp65-derived peptides using HLA-G as an antigen-presenting molecule. It was also demonstrated that these HLA-G-restricted pp65-specific T cells are able to kill the human astrocytoma cell line U373, which was transfected with HLA-G and infected with HCMV. Moreover, using HLA-G tetramers refolded with a synthetic pp65-derived peptide, peptide-specific CD8 cells restricted by HLA-G have been detected . These findings provide the first evidence that HLA-G can select anti-HCMV-restricted CTLs , although the potency of this cytolytic response is limited (20–25 %). The weak HLA-G-restricted anti-HCMV response is probably due to HLA-G-mediated inhibitory signals on the development of an antiviral CTL response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18735-0
2003-02-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/2/vir840307.html?itemId=/content/journal/jgv/10.1099/vir.0.18735-0&mimeType=html&fmt=ahah

References

  1. Allan, D. S., Colonna, M., Lanier, L. L., Churakova, T. D., Abrams, J. S., Ellis, S. A., McMichael, A. J. & Braud, V. M. ( 1999; ). Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J Exp Med 189, 1149–1156.[CrossRef]
    [Google Scholar]
  2. Arrode, G., Boccaccio, C., Lule, J., Allart, S., Moinard, N., Abastado, J. P., Alam, A. & Davrinche, C. ( 2000; ). Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8+ T cells by dendritic cells. J Virol 74, 10018–10024.[CrossRef]
    [Google Scholar]
  3. Blaschitz, A., Lenfant, F., Mallet, V., Hartmann, M., Bensussan, A., Geraghty, D. E., Le Bouteiller, P. & Dohr, G. ( 1997; ). Endothelial cells in chorionic fetal vessels of first trimester placenta express HLA-G. Eur J Immunol 27, 3380–3388.[CrossRef]
    [Google Scholar]
  4. Braud, V. M. & McMichael, A. J. ( 1999; ). Regulation of NK cell functions through interaction of the CD94/NKG2 receptors with the nonclassical class I molecule HLA-E. Curr Top Microbiol Immunol 244, 85–95.
    [Google Scholar]
  5. Braud, V. M., Allan, D. S., Wilson, D. & McMichael, A. J. ( 1998; ). TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 8, 1–10.
    [Google Scholar]
  6. Clover, L. M., Sargent, I. L., Townsend, A., Tampe, R. & Redman, C. W. ( 1995; ). Expression of TAP1 by human trophoblast. Eur J Immunol 25, 543–553.[CrossRef]
    [Google Scholar]
  7. Crisa, L., McMaster, M. T., Ishii, J. K., Fisher, S. J. & Salomon, D. R. ( 1997; ). Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J Exp Med 186, 289–298.[CrossRef]
    [Google Scholar]
  8. DeMars, R., Chang, C. C., Shaw, S., Reitnauer, P. J. & Sondel, P. M. ( 1984; ). Homozygous deletions that simultaneously eliminate expressions of class I and class II antigens of EBV-transformed B-lymphoblastoid cells. I. Reduced proliferative responses of autologous and allogeneic T cells to mutant cells that have decreased expression of class II antigens. Hum Immunol 11, 77–97.[CrossRef]
    [Google Scholar]
  9. Diehl, M., Munz, C., Keilholz, W., Stevanovic, S., Holmes, N., Loke, Y. W. & Rammensee, H. G. ( 1996; ). Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol 6, 305–314.
    [Google Scholar]
  10. Duclos, H., Elfassi, E., Michelson, S., Arenzana-Seisdedos, F., Hazan, U., Munier, A. & Virelizier, J. L. ( 1989; ). Cytomegalovirus infection and trans-activation of HIV-1 and HIV-2 LTRs in human astrocytoma cells. AIDS Res Hum Retroviruses 5, 217–224.[CrossRef]
    [Google Scholar]
  11. Fisher, S., Genbacev, O., Maidji, E. & Pereira, L. ( 2000; ). Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J Virol 74, 6808–6820.[CrossRef]
    [Google Scholar]
  12. Fournel, S., Aguerre-Girr, M., Huc, X., Lenfant, F., Alam, A., Toubert, A., Bensussan, A. & Le Bouteiller, P. ( 2000; ). Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164, 6100–6104.[CrossRef]
    [Google Scholar]
  13. Fowler, D. H., Breglio, J., Nagel, G., Eckhaus, M. A. & Gress, R. E. ( 1996; ). Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol 157, 4811–4821.
    [Google Scholar]
  14. Fox, H. ( 1993; ). The placenta and infection. In The Human Placenta, pp. 313–333. Edited by C. W. Redman, I. L. Sargent & P. M. Starkey. Oxford: Blackwell Science.
  15. Gobin, S. J., Wilson, L., Keijsers, V. & Van den Elsen, P. J. ( 1997; ). Antigen processing and presentation by human trophoblast-derived cell lines. J Immunol 158, 3587–3592.
    [Google Scholar]
  16. Gonczol, E., Berensci, K., Pincus, S., Endresz, V., Meric, C., Paoletti, E. & Plotkin, S. A. ( 1995; ). Preclinical evaluation of an ALVAC (canarypox): human cytomegalovirus glycoprotein B vaccine candidate. Vaccine 13, 1080–1085.[CrossRef]
    [Google Scholar]
  17. Hemmings, D. G., Kilani, R., Nykiforuk, C., Preiksaitis, J. & Guilbert, L. J. ( 1998; ). Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J Virol 72, 4970–4979.
    [Google Scholar]
  18. Horuzsko, A., Antoniou, J., Tomlinson, P., Portik-Dobos, V. & Mellor, A. L. ( 1997; ). HLA-G functions as a restriction element and a transplantation antigen in mice. Int Immunol 9, 645–653.[CrossRef]
    [Google Scholar]
  19. Horuzsko, A., Portik-Dobos, V., Hansen, K. A., Markowitz, R. B., Helman, S. W. & Mellor, A. L. ( 1999; ). Induction of HLA-G-specific human CD8+ T cell lines by stimulation across a polymorphism of HLA-G. Transplant Proc 31, 1860–1863.[CrossRef]
    [Google Scholar]
  20. Horuzsko, A., Lenfant, F., Munn, D. H. & Mellor, A. L. ( 2001; ). Maturation of antigen-presenting cells is compromised in HLA-G transgenic mice. Int Immunol 13, 385–394.[CrossRef]
    [Google Scholar]
  21. Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S. & Steinman, R. M. ( 1992; ). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176, 1693–1702.[CrossRef]
    [Google Scholar]
  22. Ishitani, A. & Geraghty, D. E. ( 1992; ). Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci U S A 89, 3947–3951.[CrossRef]
    [Google Scholar]
  23. Kern, F., Surel, I. P., Faulhaber, N., Frommel, C., Schneider-Mergener, J., Schonemann, C., Reinke, P. & Volk, H. D. ( 1999; ). Target structures of the CD8+-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73, 8179–8184.
    [Google Scholar]
  24. King, A., Allan, D. S., Bowen, M., Powis, S. J., Joseph, S., Verma, S., Hiby, S. E., McMichael, A. J., Loke, Y. W. & Braud, V. M. ( 2000; ). HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol 30, 1623–1631.[CrossRef]
    [Google Scholar]
  25. Kovats, S., Main, E. K., Librach, C., Stubblebine, M., Fisher, S. J. & DeMars, R. ( 1990; ). A class I antigen, HLA-G, expressed in human trophoblasts. Science 248, 220–223.[CrossRef]
    [Google Scholar]
  26. Kriel, R. L., Gates, G. A., Wulff, H., Powell, N., Poland, J. D. & Chin, T. D. ( 1970; ). Cytomegalovirus isolations associated with pregnancy wastage. Am J Obstet Gynecol 106, 885–892.
    [Google Scholar]
  27. Lanier, L. L. ( 1999; ). Natural killer cells fertile with receptors for HLA-G? Proc Natl Acad Sci U S A 96, 5343–5345.[CrossRef]
    [Google Scholar]
  28. Le Bouteiller, P., Solier, C., Proll, J., Aguerre-Girr, M., Fournel, S. & Lenfant, F. ( 1999; ). Placental HLA-G protein expression in vivo: where and what for? Hum Reprod Update 5, 223–233.[CrossRef]
    [Google Scholar]
  29. Lee, N., Malacko, A. R., Ishitani, A., Chen, M. C., Bajorath, J., Marquardt, H. & Geraghty, D. E. ( 1995; ). The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3, 591–600.[CrossRef]
    [Google Scholar]
  30. Lee, N., Goodlett, D. R., Ishitani, A., Marquardt, H. & Geraghty, D. E. ( 1998; ). HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol 160, 4951–4960.
    [Google Scholar]
  31. Le Gal, F. A., Riteau, B., Sedlik, C., Khalil-Daher, I., Menier, C., Dausset, J., Guillet, J. G., Carosella, E. D. & Rouas-Freiss, N. ( 1999; ). HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 11, 1351–1356.[CrossRef]
    [Google Scholar]
  32. Lew, J. F. & Fowler, M. G. ( 1998; ). Perinatal HIV-1 transmission in the United States and Internationally. Trophoblast Res 12, 85–103.
    [Google Scholar]
  33. Liang, S., Baibakov, B. & Horuzsko, A. ( 2002; ). HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol 32, 2418–2426.[CrossRef]
    [Google Scholar]
  34. Lozano, J. M., Gonzalez, R., Kindelan, J. M., Rouas-Freiss, N., Caballos, R., Dausset, J., Carosella, E. D. & Pena, J. ( 2002; ). Monocytes and T lymphocytes in HIV-1-positive patients express HLA-G molecule. AIDS 16, 347–351.[CrossRef]
    [Google Scholar]
  35. Ludewig, B., Ehl, S., Karrer, U., Odermatt, B., Hengartner, H. & Zinkernagel, R. M. ( 1998; ). Dendritic cells efficiently induce protective antiviral immunity. J Virol 72, 3812–3818.
    [Google Scholar]
  36. Mallet, V., Blaschitz, A., Crisa, L., Schmitt, C., Fournel, S., King, A., Loke, Y. W., Dohr, G. & Le Bouteiller, P. ( 1999; ). HLA-G in the human thymus: a subpopulation of medullary epithelial but not CD83+ dendritic cells expresses HLA-G as a membrane-bound and soluble protein. Int Immunol 11, 889–898.[CrossRef]
    [Google Scholar]
  37. McLaughlin-Taylor, E., Pande, H., Forman, S. J., Tanamachi, B., Li,C.R., Zaia, J. A., Greenberg, P. D. & Riddell, S. R. ( 1994; ). Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43, 103–110.[CrossRef]
    [Google Scholar]
  38. Moris, A., Teichgraber, V., Gauthier, L., Buhring, H. J. & Rammensee, H. G. ( 2001; ). Cutting edge: characterization of allorestricted and peptide-selective alloreactive T cells using HLA-tetramer selection. J Immunol 166, 4818–4821.[CrossRef]
    [Google Scholar]
  39. Naib, Z. M., Nahmias, A. J., Josey, W. E. & Wheeler, J. H. ( 1970; ). Association of maternal genital herpetic infection with spontaneous abortion. Obstet Gynecol 35, 260–263.
    [Google Scholar]
  40. Onno, M., Le Friec, G., Pangault, C., Amiot, L., Guilloux, V., Drenou, B., Caulet-Maugendre, S., Andre, P. & Fauchet, R. ( 2000; ). Modulation of HLA-G antigens expression in myelomonocytic cells. Hum Immunol 61, 1086–1094.[CrossRef]
    [Google Scholar]
  41. Park, B., Lee, S., Kim, E., Chang, S., Jin, M. & Ahn, K. ( 2001; ). The truncated cytoplasmic tail of HLA-G serves a quality-control function in post-ER compartments. Immunity 15, 213–224.[CrossRef]
    [Google Scholar]
  42. Plotkin, S. A. ( 1994; ). Vaccines for varicella-zoster virus and cytomegalovirus: recent progress. Science 265, 1383–1385.[CrossRef]
    [Google Scholar]
  43. Salter, R. D. & Cresswell, P. ( 1986; ). Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J 5, 943–949.
    [Google Scholar]
  44. Sanders, S. K., Giblin, P. A. & Kavathas, P. ( 1991; ). Cell–cell adhesion mediated by CD8 and human histocompatibility leukocyte antigen G, a nonclassical major histocompatibility complex class 1 molecule on cytotrophoblasts. J Exp Med 174, 737–740.[CrossRef]
    [Google Scholar]
  45. Schmidt, C. M., Garrett, E. & Orr, H. T. ( 1997; ). Cytotoxic T lymphocyte recognition of HLA-G in mice. Hum Immunol 55, 127–139.[CrossRef]
    [Google Scholar]
  46. Solache, A., Morgan, C. L., Dodi, A. I., Morte, C., Scott, I., Baboonian, C., Zal, B., Goldman, J., Grundy, J. E. & Madrigal, J. A. ( 1999; ). Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol 163, 5512–5518.
    [Google Scholar]
  47. Spencer, J. V., Lockridge, K. M., Barry, P. A., Lin, G., Tsang, M., Penfold, M. E. & Schall, T. J. ( 2002; ). Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76, 1285–1292.[CrossRef]
    [Google Scholar]
  48. Vaz-Santiago, J., Lule, J., Rohrlich, P., Jacquier, C., Gibert, N., Le Roy, E., Betbeder, D., Davignon, J. L. & Davrinche, C. ( 2001; ). Ex vivo stimulation and expansion of both CD4+ and CD8+ T cells from peripheral blood mononuclear cells of human cytomegalovirus-seropositive blood donors by using a soluble recombinant chimeric protein, IE1–pp65. J Virol 75, 7840–7847.[CrossRef]
    [Google Scholar]
  49. Walter, E. A., Greenberg, P. D., Gilbert, M. J., Finch, R. J., Watanabe, K. S., Thomas, E. D. & Riddell, S. R. ( 1995; ). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333, 1038–1044.[CrossRef]
    [Google Scholar]
  50. Wills, M. R., Carmichael, A. J., Mynard, K., Jin, X., Weekes, M. P., Plachter, B. & Sissons, J. G. ( 1996; ). The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T- cell receptor usage of pp65-specific CTL. J Virol 70, 7569–7579.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18735-0
Loading
/content/journal/jgv/10.1099/vir.0.18735-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error