Skip to content
1887

Abstract

The non-classical major histocompatibility complex class I molecule HLA-G is expressed mainly by extravillous trophoblasts at the materno–foetal interface. HLA-G has been found to bind endogenously processed nonameric peptides but its function as a restriction element for a cytotoxic T cell response to viruses with tropism for trophoblastic cells has never been demonstrated. In this study, candidate viral peptides derived from human cytomegalovirus (HCMV) pp65 (UL83), which stabilized the HLA-G molecule on HLA-G-transfected T2 cells, were identified. The specific anti-pp65 cytotoxic T lymphocyte (CTL) response restricted by HLA-G in triple transgenic mice (HLA-G, human β2m, human CD8α) was then investigated by injection of dendritic cells loaded with synthetic pp65-derived peptides or by infection with canarypox virus expressing pp65. Results showed that CTLs from HLA-G mice have the capacity to kill target cells either infected with recombinant vaccinia viruses expressing pp65 or loaded with specific pp65-derived peptides using HLA-G as an antigen-presenting molecule. It was also demonstrated that these HLA-G-restricted pp65-specific T cells are able to kill the human astrocytoma cell line U373, which was transfected with HLA-G and infected with HCMV. Moreover, using HLA-G tetramers refolded with a synthetic pp65-derived peptide, peptide-specific CD8 cells restricted by HLA-G have been detected . These findings provide the first evidence that HLA-G can select anti-HCMV-restricted CTLs , although the potency of this cytolytic response is limited (20–25 %). The weak HLA-G-restricted anti-HCMV response is probably due to HLA-G-mediated inhibitory signals on the development of an antiviral CTL response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18735-0
2003-02-01
2025-06-19
Loading full text...

Full text loading...

References

  1. Allan D. S., Colonna M., Lanier L. L., Churakova T. D., Abrams J. S., Ellis S. A., McMichael A. J., Braud V. M. 1999; Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J Exp Med 189:1149–1156
    [Google Scholar]
  2. Arrode G., Boccaccio C., Lule J., Allart S., Moinard N., Abastado J. P., Alam A., Davrinche C. 2000; Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8+ T cells by dendritic cells. J Virol 74:10018–10024
    [Google Scholar]
  3. Blaschitz A., Lenfant F., Mallet V., Hartmann M., Bensussan A., Geraghty D. E., Le Bouteiller P., Dohr G. 1997; Endothelial cells in chorionic fetal vessels of first trimester placenta express HLA-G. Eur J Immunol 27:3380–3388
    [Google Scholar]
  4. Braud V. M., McMichael A. J. 1999; Regulation of NK cell functions through interaction of the CD94/NKG2 receptors with the nonclassical class I molecule HLA-E. Curr Top Microbiol Immunol 244:85–95
    [Google Scholar]
  5. Braud V. M., Allan D. S., Wilson D., McMichael A. J. 1998; TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 8:1–10
    [Google Scholar]
  6. Clover L. M., Sargent I. L., Townsend A., Tampe R., Redman C. W. 1995; Expression of TAP1 by human trophoblast. Eur J Immunol 25:543–553
    [Google Scholar]
  7. Crisa L., McMaster M. T., Ishii J. K., Fisher S. J., Salomon D. R. 1997; Identification of a thymic epithelial cell subset sharing expression of the class Ib HLA-G molecule with fetal trophoblasts. J Exp Med 186:289–298
    [Google Scholar]
  8. DeMars R., Chang C. C., Shaw S., Reitnauer P. J., Sondel P. M. 1984; Homozygous deletions that simultaneously eliminate expressions of class I and class II antigens of EBV-transformed B-lymphoblastoid cells. I. Reduced proliferative responses of autologous and allogeneic T cells to mutant cells that have decreased expression of class II antigens. Hum Immunol 11:77–97
    [Google Scholar]
  9. Diehl M., Munz C., Keilholz W., Stevanovic S., Holmes N., Loke Y. W., Rammensee H. G. 1996; Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol 6:305–314
    [Google Scholar]
  10. Duclos H., Elfassi E., Michelson S., Arenzana-Seisdedos F., Hazan U., Munier A., Virelizier J. L. 1989; Cytomegalovirus infection and trans-activation of HIV-1 and HIV-2 LTRs in human astrocytoma cells. AIDS Res Hum Retroviruses 5:217–224
    [Google Scholar]
  11. Fisher S., Genbacev O., Maidji E., Pereira L. 2000; Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero : implications for transmission and pathogenesis. J Virol 74:6808–6820
    [Google Scholar]
  12. Fournel S., Aguerre-Girr M., Huc X., Lenfant F., Alam A., Toubert A., Bensussan A., Le Bouteiller P. 2000; Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164:6100–6104
    [Google Scholar]
  13. Fowler D. H., Breglio J., Nagel G., Eckhaus M. A., Gress R. E. 1996; Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol 157:4811–4821
    [Google Scholar]
  14. Fox H. 1993; The placenta and infection. In The Human Placenta pp  313–333 Edited by Redman C. W., Sargent I. L., Starkey P. M. Oxford: Blackwell Science;
    [Google Scholar]
  15. Gobin S. J., Wilson L., Keijsers V., Van den Elsen P. J. 1997; Antigen processing and presentation by human trophoblast-derived cell lines. J Immunol 158:3587–3592
    [Google Scholar]
  16. Gonczol E., Berensci K., Pincus S., Endresz V., Meric C., Paoletti E., Plotkin S. A. 1995; Preclinical evaluation of an ALVAC (canarypox): human cytomegalovirus glycoprotein B vaccine candidate. Vaccine 13:1080–1085
    [Google Scholar]
  17. Hemmings D. G., Kilani R., Nykiforuk C., Preiksaitis J., Guilbert L. J. 1998; Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J Virol 72:4970–4979
    [Google Scholar]
  18. Horuzsko A., Antoniou J., Tomlinson P., Portik-Dobos V., Mellor A. L. 1997; HLA-G functions as a restriction element and a transplantation antigen in mice. Int Immunol 9:645–653
    [Google Scholar]
  19. Horuzsko A., Portik-Dobos V., Hansen K. A., Markowitz R. B., Helman S. W., Mellor A. L. 1999; Induction of HLA-G-specific human CD8+ T cell lines by stimulation across a polymorphism of HLA-G. Transplant Proc 31:1860–1863
    [Google Scholar]
  20. Horuzsko A., Lenfant F., Munn D. H., Mellor A. L. 2001; Maturation of antigen-presenting cells is compromised in HLA-G transgenic mice. Int Immunol 13:385–394
    [Google Scholar]
  21. Inaba K., Inaba M., Romani N., Aya H., Deguchi M., Ikehara S., Muramatsu S., Steinman R. M. 1992; Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702
    [Google Scholar]
  22. Ishitani A., Geraghty D. E. 1992; Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci U S A 89:3947–3951
    [Google Scholar]
  23. Kern F., Surel I. P., Faulhaber N., Frommel C., Schneider-Mergener J., Schonemann C., Reinke P., Volk H. D. 1999; Target structures of the CD8+-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73:8179–8184
    [Google Scholar]
  24. King A., Allan D. S., Bowen M., Powis S. J., Joseph S., Verma S., Hiby S. E., McMichael A. J., Loke Y. W., Braud V. M. 2000; HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol 30:1623–1631
    [Google Scholar]
  25. Kovats S., Main E. K., Librach C., Stubblebine M., Fisher S. J., DeMars R. 1990; A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223
    [Google Scholar]
  26. Kriel R. L., Gates G. A., Wulff H., Powell N., Poland J. D., Chin T. D. 1970; Cytomegalovirus isolations associated with pregnancy wastage. Am J Obstet Gynecol 106:885–892
    [Google Scholar]
  27. Lanier L. L. 1999; Natural killer cells fertile with receptors for HLA-G?. Proc Natl Acad Sci U S A 96:5343–5345
    [Google Scholar]
  28. Le Bouteiller P., Solier C., Proll J., Aguerre-Girr M., Fournel S., Lenfant F. 1999; Placental HLA-G protein expression in vivo : where and what for?. Hum Reprod Update 5:223–233
    [Google Scholar]
  29. Lee N., Malacko A. R., Ishitani A., Chen M. C., Bajorath J., Marquardt H., Geraghty D. E. 1995; The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:591–600
    [Google Scholar]
  30. Lee N., Goodlett D. R., Ishitani A., Marquardt H., Geraghty D. E. 1998; HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol 160:4951–4960
    [Google Scholar]
  31. Le Gal F. A., Riteau B., Sedlik C., Khalil-Daher I., Menier C., Dausset J., Guillet J. G., Carosella E. D., Rouas-Freiss N. 1999; HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 11:1351–1356
    [Google Scholar]
  32. Lew J. F., Fowler M. G. 1998; Perinatal HIV-1 transmission in the United States and Internationally. Trophoblast Res 12:85–103
    [Google Scholar]
  33. Liang S., Baibakov B., Horuzsko A. 2002; HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol 32:2418–2426
    [Google Scholar]
  34. Lozano J. M., Gonzalez R., Kindelan J. M., Rouas-Freiss N., Caballos R., Dausset J., Carosella E. D., Pena J. 2002; Monocytes and T lymphocytes in HIV-1-positive patients express HLA-G molecule. AIDS 16:347–351
    [Google Scholar]
  35. Ludewig B., Ehl S., Karrer U., Odermatt B., Hengartner H., Zinkernagel R. M. 1998; Dendritic cells efficiently induce protective antiviral immunity. J Virol 72:3812–3818
    [Google Scholar]
  36. Mallet V., Blaschitz A., Crisa L., Schmitt C., Fournel S., King A., Loke Y. W., Dohr G., Le Bouteiller P. 1999; HLA-G in the human thymus: a subpopulation of medullary epithelial but not CD83+ dendritic cells expresses HLA-G as a membrane-bound and soluble protein. Int Immunol 11:889–898
    [Google Scholar]
  37. McLaughlin-Taylor E., Pande H., Forman S. J., Tanamachi B., Li C.R., Zaia J. A., Greenberg P. D., Riddell S. R. 1994; Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43:103–110
    [Google Scholar]
  38. Moris A., Teichgraber V., Gauthier L., Buhring H. J., Rammensee H. G. 2001; Cutting edge: characterization of allorestricted and peptide-selective alloreactive T cells using HLA-tetramer selection. J Immunol 166:4818–4821
    [Google Scholar]
  39. Naib Z. M., Nahmias A. J., Josey W. E., Wheeler J. H. 1970; Association of maternal genital herpetic infection with spontaneous abortion. Obstet Gynecol 35:260–263
    [Google Scholar]
  40. Onno M., Le Friec G., Pangault C., Amiot L., Guilloux V., Drenou B., Caulet-Maugendre S., Andre P., Fauchet R. 2000; Modulation of HLA-G antigens expression in myelomonocytic cells. Hum Immunol 61:1086–1094
    [Google Scholar]
  41. Park B., Lee S., Kim E., Chang S., Jin M., Ahn K. 2001; The truncated cytoplasmic tail of HLA-G serves a quality-control function in post-ER compartments. Immunity 15:213–224
    [Google Scholar]
  42. Plotkin S. A. 1994; Vaccines for varicella-zoster virus and cytomegalovirus: recent progress. Science 265:1383–1385
    [Google Scholar]
  43. Salter R. D., Cresswell P. 1986; Impaired assembly and transport of HLA-A and -B antigens in a mutant TxB cell hybrid. EMBO J 5:943–949
    [Google Scholar]
  44. Sanders S. K., Giblin P. A., Kavathas P. 1991; Cell–cell adhesion mediated by CD8 and human histocompatibility leukocyte antigen G, a nonclassical major histocompatibility complex class 1 molecule on cytotrophoblasts. J Exp Med 174:737–740
    [Google Scholar]
  45. Schmidt C. M., Garrett E., Orr H. T. 1997; Cytotoxic T lymphocyte recognition of HLA-G in mice. Hum Immunol 55:127–139
    [Google Scholar]
  46. Solache A., Morgan C. L., Dodi A. I., Morte C., Scott I., Baboonian C., Zal B., Goldman J., Grundy J. E., Madrigal J. A. 1999; Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol 163:5512–5518
    [Google Scholar]
  47. Spencer J. V., Lockridge K. M., Barry P. A., Lin G., Tsang M., Penfold M. E., Schall T. J. 2002; Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76:1285–1292
    [Google Scholar]
  48. Vaz-Santiago J., Lule J., Rohrlich P., Jacquier C., Gibert N., Le Roy E., Betbeder D., Davignon J. L., Davrinche C. 2001; Ex vivo stimulation and expansion of both CD4+ and CD8+ T cells from peripheral blood mononuclear cells of human cytomegalovirus-seropositive blood donors by using a soluble recombinant chimeric protein, IE1–pp65. J Virol 75:7840–7847
    [Google Scholar]
  49. Walter E. A., Greenberg P. D., Gilbert M. J., Finch R. J., Watanabe K. S., Thomas E. D., Riddell S. R. 1995; Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044
    [Google Scholar]
  50. Wills M. R., Carmichael A. J., Mynard K., Jin X., Weekes M. P., Plachter B., Sissons J. G. 1996; The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T- cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.18735-0
Loading
/content/journal/jgv/10.1099/vir.0.18735-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error