1887

Abstract

A self-modulating mechanism by the hepatitis C virus (HCV) core protein has been suggested to influence the level of HCV replication, but current data on this subject are contradictory. We examined the effect of wild-type and mutated core protein on HCV IRES- and cap-dependent translation. The wild-type core protein was shown to inhibit both IRES- and cap-dependent translation in an system. This effect was duplicated in a dose-dependent manner with a synthetic peptide representing amino acids 1–20 of the HCV core protein. This peptide was able to bind to the HCV IRES as shown by a mobility shift assay. In contrast, a peptide derived from the hepatitis B virus (HBV) core protein that contained a similar proportion of basic residues was unable to inhibit translation or bind the HCV IRES. A recombinant vaccinia–HCV core virus was used to examine the effect of the HCV core protein on HCV IRES-dependent translation in cells and this was compared with the effects of an HBV core-recombinant vaccinia virus. In CV-1 and HuH7 cells, the HCV core protein inhibited translation directed by the IRES elements of HCV, encephalomyocarditis virus and classical swine fever virus as well as cap-dependent translation, whereas in HepG2 cells, only HCV IRES-dependent translation was affected. Thus, the ability of the HCV core protein to selectively inhibit HCV IRES-dependent translation is cell-specific. N-terminal truncated (aa 1–20) HCV core protein that was expressed from a novel recombinant vaccinia virus in cells abrogated the inhibitory phenotype of the core protein , consistent with the above data.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18697-0
2003-04-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840815.html?itemId=/content/journal/jgv/10.1099/vir.0.18697-0&mimeType=html&fmt=ahah

References

  1. Bantel, H., Lugering, A., Poremba, C., Lugering, N., Held, J., Domscheke, W. & Schulze-Osthoff, K. ( 2001; ). Caspase activation correlates with the degree of inflammatory liver injury in chronic hepatitis C virus infection. Hepatology 34, 758–767.[CrossRef]
    [Google Scholar]
  2. Bartenschlager, R. & Lohmann, V. ( 2000; ). Replication of hepatitis C virus. J Gen Virol 81, 1631–1648.
    [Google Scholar]
  3. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. ( 2000; ). Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974.[CrossRef]
    [Google Scholar]
  4. Boyle, D. B., Coupar, B. E. & Both, G. W. ( 1985; ). Multiple-cloning-site plasmids for the rapid construction of recombinant poxviruses. Gene 35, 169–177.[CrossRef]
    [Google Scholar]
  5. Cohen, B. & Richmond, J. E. ( 1982; ). Electron microscopy of hepatitis B virus core antigen synthesized in E. coli. Nature 296, 677–678.[CrossRef]
    [Google Scholar]
  6. Furuya, T. & Lai, M. M. C. ( 1993; ). Three different cellular proteins bind to complementary sites on the 5′-end-positive and 3′-end-negative strands of mouse hepatitis virus RNA. J Virol 67, 7215–7222.
    [Google Scholar]
  7. Gong, Y., Trowbridge, R., Macnaughton, T. B., Westaway, E. G., Shannon, A. D. & Gowans, E. J. ( 1996; ). Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus. J Gen Virol 77, 2729–2736.[CrossRef]
    [Google Scholar]
  8. Gowans, E. J. ( 2000; ). Distribution of markers of hepatitis C virus infection throughout the body. Semin Liver Dis 20, 85–102.[CrossRef]
    [Google Scholar]
  9. Greive, S. J. ( 2001; ). Studies on the expression of the structural proteins of hepatitis C virus. PhD thesis, University of Queensland, Australia.
  10. Greive, S. J., Webb, R. I., Mackenzie, J. M. & Gowans, E. J. ( 2002; ). Expression of the hepatitis C virus structural proteins in mammalian cells induces morphology similar to that in natural infection. J Viral Hepat 9, 9–17.[CrossRef]
    [Google Scholar]
  11. Honda, M., Brown, E. A. & Lemon, S. M. ( 1996; ). Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968.
    [Google Scholar]
  12. Ikeda, M., Yi, M., Li, K. & Lemon, S. M. ( 2002; ). Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76, 2997–3006.[CrossRef]
    [Google Scholar]
  13. Kunkel, M., Lorinczi, M., Rijnbrand, R., Lemon, S. M. & Watowich, S. J. ( 2001; ). Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J Virol 75, 2119–2129.[CrossRef]
    [Google Scholar]
  14. Lai, M. M. C. & Ware, C. F. ( 1999; ). Hepatitis C virus core protein: possible roles in viral pathogenesis. Curr Top Microbiol Immunol 242, 117–134.
    [Google Scholar]
  15. Laskus, T., Radkowski, M., Wang, L. F., Vargas, H. & Rakela, J. ( 1998; ). Search for hepatitis C virus extrahepatic replication sites in patients with acquired immunodeficiency syndrome: specific detection of negative-strand viral RNA in various tissues. Hepatology 28, 1398–1401.[CrossRef]
    [Google Scholar]
  16. Lo, S. Y., Selby, M. J. & Ou, J. H. ( 1996; ). Interaction between hepatitis C virus core protein and E1 envelope protein. J Virol 70, 5177–5182.
    [Google Scholar]
  17. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  18. Lott, W. B., Takyar, S. S., Tuppen, J., Crawford, D. H., Harrison, M., Sloots, T. P. & Gowans, E. J. ( 2001; ). Vitamin B12 and hepatitis C: molecular biology and human pathology. Proc Natl Acad Sci U S A 98, 4916–4921.[CrossRef]
    [Google Scholar]
  19. McLauchlan, J. ( 2000; ). Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7, 2–14.[CrossRef]
    [Google Scholar]
  20. Minton, E. J., Smillie, D., Neal, K. R., Irving, W. L., Underwood, J. C. & James, V. ( 1998; ). Association between MHC class II alleles and clearance of circulating hepatitis C virus. Members of the Trent Hepatitis C Virus Study Group. J Infect Dis 178, 39–44.[CrossRef]
    [Google Scholar]
  21. Muller, H. M., Pfaff, E., Goeser, T., Kallinowski, B., Solbach, C. & Theilmann, L. ( 1993; ). Peripheral blood leukocytes serve as a possible extrahepatic site for hepatitis C virus replication. J Gen Virol 74, 669–676.[CrossRef]
    [Google Scholar]
  22. Pietschmann, T., Lohmann, V., Kaul, A., Krieger, N., Rinck, G., Rutter, G., Strand, D. & Bartenschlager, R. ( 2002; ). Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol 76, 4008–4021.[CrossRef]
    [Google Scholar]
  23. Ray, R. B., Lagging, L. M., Meyer, K., Steele, R. & Ray, R. ( 1995; ). Transcriptional regulation of cellular and viral promoters by the hepatitis C virus core protein. Virus Res 37, 209–220.[CrossRef]
    [Google Scholar]
  24. Ray, R. B., Steele, R., Meyer, K. & Ray, R. ( 1997; ). Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem 272, 10983–10986.[CrossRef]
    [Google Scholar]
  25. Ray, S. C., Wang, Y. M., Laeyendecker, O., Ticehurst, J. R., Villano, S. A. & Thomas, D. L. ( 1999; ). Acute hepatitis C virus structural gene sequences as predictors of persistent viremia: hypervariable region 1 as a decoy. J Virol 73, 2938–2946.
    [Google Scholar]
  26. Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Internal ribosome entry site-mediated translation in hepatitis C virus replication. Curr Top Microbiol Immunol 242, 85–116.
    [Google Scholar]
  27. Robertson, B., Myers, G., Howard, C. & 14 other authors. ( 1998; ). Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy. Arch Virol 143, 2493–2503.[CrossRef]
    [Google Scholar]
  28. Santolini, E., Migliaccio, G. & La Monica, N. ( 1994; ). Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 68, 3631–3641.
    [Google Scholar]
  29. Shimoike, T., Mimori, S., Tani, H., Matsuura, Y. & Miyamura, T. ( 1999; ). Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73, 9718–9725.
    [Google Scholar]
  30. Shrivastava, A., Manna, S. K., Ray, R. & Aggarwal, B. B. ( 1998; ). Ectopic expression of hepatitis C virus core protein differentially regulates nuclear transcription factors. J Virol 72, 9722–9728.
    [Google Scholar]
  31. Simmonds, P. ( 1995; ). Variability of hepatitis C virus. Hepatology 21, 570–583.[CrossRef]
    [Google Scholar]
  32. Trowbridge, R. & Gowans, E. J. ( 1998; ). Molecular cloning of an Australian isolate of hepatitis C virus. Arch Virol 143, 501–511.[CrossRef]
    [Google Scholar]
  33. Wang, Y. H., Trowbridge, R. & Gowans, E. J. ( 1997; ). Expression and interaction of the hepatitis C virus structural proteins and the 5′ untranslated region in baculovirus infected cells. Arch Virol 142, 2211–2223.[CrossRef]
    [Google Scholar]
  34. Wang, T. H., Rijnbrand, R. C. & Lemon, S. M. ( 2000; ). Core protein-coding sequence, but not core protein, modulates the efficiency of cap-independent translation directed by the internal ribosome entry site of hepatitis C virus. J Virol 74, 11347–11358.[CrossRef]
    [Google Scholar]
  35. World Health Organisation. ( 1999; ). Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepat 6, 35–47.[CrossRef]
    [Google Scholar]
  36. Zhang, J., Yamada, O., Yoshida, H., Iwai, T. & Araki, H. ( 2002; ). Autogenous translation inhibition of core protein: implication for switch from translation to RNA replication in hepatitis C virus. Virology 293, 141–150.[CrossRef]
    [Google Scholar]
  37. Zibert, A., Meisel, H., Kraas, W., Schulz, A., Jung, G. & Roggendorf, M. ( 1997; ). Early antibody response against hypervariable region 1 is associated with acute self-limiting infections of hepatitis C virus. Hepatology 25, 1245–1249.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18697-0
Loading
/content/journal/jgv/10.1099/vir.0.18697-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error