1887

Abstract

The hepatitis B virus (HBV) core antigen (HBcAg) has a unique ability to bind a high frequency of naive human and murine B cells. The role of HBcAg-binding naive B cells in the immunogenicity of HBcAg is not clear. The HBcAg-binding properties of naive B cells were characterized using HBcAg particles with mutated spike region (residues 76–85) sequences. Deletion of residues 76–85 (HBcΔ76–85) destroyed naive B cell binding, whereas deletion of residues 79–85 did not. HBcAg particles with an Ile instead of the natural Ala at position 80 did not bind naive B cells, whereas reversion of Ile→Ala restored B cell binding. Destroying the B cell-binding ability of HBcAg had a marginal effect on the overall B cell immunogenicity of the different particles, suggesting that they were equally efficient in priming T helper cells. Therefore, the importance of HBcAg-binding B cells is studied with relation to the priming of HBcAg-specific cytotoxic T cells (CTLs). The role of HBcAg-binding B cells in the priming of HBcAg-specific CTLs was evaluated by immunization with endogenous HBcAg (DNA immunization) and exogenous recombinant HBcAg particles. Endogenous HBcAg primed HBcAg-specific CTLs in wild-type and B cell-deficient mice, whereas exogenous HBcAg primed HBcAg-specific CTLs only in wild-type mice. Importantly, HBcΔ76–85 did not prime CTLs despite the presence of B cells. Thus, the ability of exogenous HBcAg particles to prime specific CTLs is B cell dependent, suggesting a possible role for HBcAg-binding B cells in HBV infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18678-0
2003-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840139.html?itemId=/content/journal/jgv/10.1099/vir.0.18678-0&mimeType=html&fmt=ahah

References

  1. Barnaba, V., Franco, A., Alberti, A., Benvenuto, R. & Balsano, F. ( 1990; ). Selective killing of hepatitis B envelope antigen-specific B cells by class I-restricted, exogenous antigen-specific T lymphocytes. Nature 345, 258–260.[CrossRef]
    [Google Scholar]
  2. Bennett, S. R., Carbone, F. R., Toy, T., Miller, J. F. & Heath, W. R. ( 1998; ). B cells directly tolerize CD8+ T cells. J Exp Med 188, 1977–1983.[CrossRef]
    [Google Scholar]
  3. Bichko, V., Pushko, P., Dreilina, D., Pumpen, P. & Gren, E. ( 1985; ). Subtype ayw variant of hepatitis B virus. DNA primary structure analysis. FEBS Lett 185, 208–212.[CrossRef]
    [Google Scholar]
  4. Bottcher, B., Wynne, S. A. & Crowther, R. A. ( 1997; ). Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.[CrossRef]
    [Google Scholar]
  5. Cao, T., Lazdina, U., Desombere, I., Vanlandschoot, P., Milich, D. R., Sallberg, M. & Leroux-Roels, G. ( 2001; ). Hepatitis B virus core antigen binds and activates naive human B cells in vivo: studies with a human PBL-NOD/SCID mouse model. J Virol 75, 6359–6366.[CrossRef]
    [Google Scholar]
  6. Carbone, F. R., Kurts, C., Bennett, S. R., Miller, J. F. & Heath, W. R. ( 1998; ). Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol Today 19, 368–373.[CrossRef]
    [Google Scholar]
  7. Fehr, T., Skrastina, D., Pumpens, P. & Zinkernagel, R. M. ( 1998; ). T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci U S A 95, 9477–9481.[CrossRef]
    [Google Scholar]
  8. Jin, L. & Peterson, D. L. ( 1995; ). Expression, isolation, and characterization of the hepatitis C virus ATPase/RNA helicase. Arch Biochem Biophys 323, 47–53.[CrossRef]
    [Google Scholar]
  9. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. ( 1986; ). Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678.[CrossRef]
    [Google Scholar]
  10. Kast, W. M., Roux, L., Curren, J., Blom, H. J., Voordouw, A. C., Meloen, R. H., Kolakofsky, D. & Melief, C. J. ( 1991; ). Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proc Natl Acad Sci U S A 88, 2283–2287.[CrossRef]
    [Google Scholar]
  11. Ke, Y. & Kapp, J. A. ( 1996; ). Exogenous antigens gain access to the major histocompatibility complex class I processing pathway in B cells by receptor-mediated uptake. J Exp Med 184, 1179–1184.[CrossRef]
    [Google Scholar]
  12. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. ( 1991; ). A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426.[CrossRef]
    [Google Scholar]
  13. Kuhober, A., Pudollek, H. P., Reifenberg, K., Chisari, F. V., Schlicht, H. J., Reimann, J. & Schirmbeck, R. ( 1996; ). DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol 156, 3687–3695.
    [Google Scholar]
  14. Lazdina, U., Cao, T., Steinbergs, J., Alheim, M., Pumpens, P., Peterson, D. L., Milich, D. R., Leroux-Roels, G. & Sallberg, M. ( 2001a; ). Molecular basis for the interaction of the hepatitis B virus core antigen with the surface immunoglobulin receptor on naive B cells. J Virol 75, 6367–6374.[CrossRef]
    [Google Scholar]
  15. Lazdina, U., Hultgren, C., Frelin, L. & 8 other authors ( 2001b; ). Humoral and CD4+ T helper (Th) cell responses to the hepatitis C virus non-structural 3 (NS3) protein: NS3 primes Th1-like responses more effectively as a DNA-based immunogen than as a recombinant protein. J Gen Virol 82, 1299–1308.
    [Google Scholar]
  16. Milich, D. R. & McLachlan, A. ( 1986; ). The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234, 1398–1401.[CrossRef]
    [Google Scholar]
  17. Milich, D. R., Jones, J. E., Hughes, J. L., Price, J., Raney, A. K. & McLachlan, A. ( 1990; ). Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 87, 6599–6603.[CrossRef]
    [Google Scholar]
  18. Milich, D. R., Chen, M., Schodel, F., Peterson, D. L., Jones, J. E. & Hughes, J. L. ( 1997; ). Role of B cells in antigen presentation of the hepatitis B core. Proc Natl Acad Sci U S A 94, 14648–14653.[CrossRef]
    [Google Scholar]
  19. Pushko, P., Sallberg, M., Borisova, G., Ruden, U., Bichko, V., Wahren, B., Pumpens, P. & Magnius, L. ( 1994; ). Identification of hepatitis B virus core protein regions exposed or internalized at the surface of HBcAg particles by scanning with monoclonal antibodies. Virology 202, 912–920.[CrossRef]
    [Google Scholar]
  20. Reimann, J. & Schirmbeck, R. ( 1999; ). Alternative pathways for processing exogenous and endogenous antigens that can generate peptides for MHC class I-restricted presentation. Immunol Rev 172, 131–152.[CrossRef]
    [Google Scholar]
  21. Salfeld, J., Pfaff, E., Noah, M. & Schaller, H. ( 1989; ). Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus. J Virol 63, 798–808.
    [Google Scholar]
  22. Sallberg, M., Ruden, U., Magnius, L. O., Harthus, H. P., Noah, M. & Wahren, B. ( 1991; ). Characterisation of a linear binding site for a monoclonal antibody to hepatitis B core antigen. J Med Virol 33, 248–252.[CrossRef]
    [Google Scholar]
  23. Sallberg, M., Pushko, P., Berzinsh, I., Bichko, V., Sillekens, P., Noah, M., Pumpens, P., Grens, E., Wahren, B. & Magnius, L. O. ( 1993; ). Immunochemical structure of the carboxy-terminal part of hepatitis B e antigen: identification of internal and surface-exposed sequences. J Gen Virol 74, 1335–1340.[CrossRef]
    [Google Scholar]
  24. Sandberg, J. K., Franksson, L., Sundback, J. & 10 other authors ( 2000; ). T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J Immunol 165, 25–33.[CrossRef]
    [Google Scholar]
  25. Schodel, F., Peterson, D., Zheng, J., Jones, J. E., Hughes, J. L. & Milich, D. R. ( 1993; ). Structure of hepatitis B virus core and e antigen. A single precore amino acid prevents nucleocapsid assembly. J Biol Chem 268, 1332–1337.
    [Google Scholar]
  26. Schodel, F., Peterson, D. & Milich, D. ( 1996; ). Hepatitis B virus core and e antigen: immune recognition and use as a vaccine carrier moiety. Intervirology 39, 104–110.
    [Google Scholar]
  27. Schumacher, T. N., De Bruijn, M. L., Vernie, L. N., Kast, W. M., Melief, C. J., Neefjes, J. J. & Ploegh, H. L. ( 1991; ). Peptide selection by MHC class I molecules. Nature 350, 703–706.[CrossRef]
    [Google Scholar]
  28. Schuurhuis, D. H., Ioan-Facsinay, A., Nagelkerken, B., van Schip, J. J., Sedlik, C., Melief, C. J., Verbeek, J. S. & Ossendorp, F. ( 2002; ). Antigen–antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo. J Immunol 168, 2240–2246.[CrossRef]
    [Google Scholar]
  29. Storni, T., Lechner, F., Erdmann, I., Bachi, T., Jegerlehner, A., Dumrese, T., Kundig, T. M., Ruedl, C. & Bachmann, M. F. ( 2002; ). Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with virus-like particles. J Immunol 168, 2880–2886.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18678-0
Loading
/content/journal/jgv/10.1099/vir.0.18678-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error