1887

Abstract

The antiviral potential of transcripts targeted to the non-coding regions (NCRs) of foot-and-mouth disease virus (FMDV) RNA have been studied during transient and constitutive expression in susceptible BHK-21 cells. Transient expression of antisense transcripts corresponding to the 5′ and 3′NCRs, alone or in combination, confers specific inhibition of homologous (serotype C) virus infection in BHK-21 cells. Constitutive expression of antisense 5′NCR transcripts (5′AS) exerted higher levels of inhibition to homologous and heterologous (serotypes O, A, Asia, SAT 1, SAT 2 and SAT 3) FMDV infection, as estimated by a 10-fold reduction in virus titre in the supernatants from infected clones and by a plaque reduction assay. These inhibitions were also observed, albeit to a lesser extent, in clones stably expressing antisense 3′NCR transcripts. The antiviral response was specific for FMDV, as the picornavirus encephalomyocarditis virus was not inhibited in any of the transformed cell lines. In all cases, a correlation was found between the level of transcript expression and the extent of virus inhibition. The potential to efficiently inhibit FMDV, including isolates representing the seven serotypes, by expressing interfering 5′AS transcripts opens the possibility of developing transgenic animals with a reduced susceptibility to FMDV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18668-0
2003-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/2/vir840393.html?itemId=/content/journal/jgv/10.1099/vir.0.18668-0&mimeType=html&fmt=ahah

References

  1. Agrawal, S. ( 1992; ). Antisense oligonucleotides as antiviral agents. Trends Biotechnol 10, 152–158.[CrossRef]
    [Google Scholar]
  2. Arlinghaus, R. B. & Polatnick, J. ( 1969; ). The isolation of two enzyme-ribonucleic acid complexes involved in the synthesis of foot-and-mouth disease virus ribonucleic acid. Proc Natl Acad Sci U S A 26, 821–828.
    [Google Scholar]
  3. Bachrach, H. L. ( 1968; ). Foot-and-mouth disease. Annu Rev Microbiol 22, 201–244.[CrossRef]
    [Google Scholar]
  4. Barteling, S. J. & Vreeswijk, J. ( 1991; ). Development in foot-and-mouth disease vaccines. Vaccine 9, 75–88.[CrossRef]
    [Google Scholar]
  5. Beck, E., Forss, S., Strebel, K., Cattaneo, R. & Feil, G. ( 1983; ). Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res 11, 7873–7885.[CrossRef]
    [Google Scholar]
  6. Belsham, G. J. & Brangwyn, J. K. ( 1990; ). A region of the 5′ noncoding region of foot-and-mouth diesase virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J Virol 64, 5389–5395.
    [Google Scholar]
  7. Bigeriego, P., Rosas, M. F., Zamora, E., Martínez-Salas, E. & Sobrino, F. ( 1999; ). Heterotypic inhibition of foot-and-mouth disease virus infection by combinations of RNA transcripts corresponding to the 5′ and 3′ genomic regions. Antivir Res 44, 133–141.[CrossRef]
    [Google Scholar]
  8. Bischofberger, N. & Wagner, R. W. ( 1992; ). Antisense approaches to antiviral agents. Semin Virol 3, 57–66.
    [Google Scholar]
  9. Branch, A. D. ( 1998; ). A good antisense molecule is hard to find. Trends Biochem Sci 23, 45–50.[CrossRef]
    [Google Scholar]
  10. Brown, F. ( 1992; ). New approaches to vaccination against foot-and-mouth disease. Vaccine 10, 1022–1026.[CrossRef]
    [Google Scholar]
  11. Cao, X., Bergman, I. E., Füllkrug, R. & Beck, E. ( 1995; ). Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J Virol 69, 560–563.
    [Google Scholar]
  12. Cohen, J. S. ( 1991; ). Antisense oligodeoxynucleotides as antiviral agents. Antiviral Res 16, 121–133.[CrossRef]
    [Google Scholar]
  13. Chomczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.
    [Google Scholar]
  14. Day, A. G., Bejarano, E. R., Buck, K. W., Burrell, M. & Lichtenstein, C. P. ( 1991; ). Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88, 6721–6725.[CrossRef]
    [Google Scholar]
  15. de la Luna, S. & Ortín, J. ( 1992; ). pac gene as efficient dominant marker and reporter gene in mammalian cells. Methods Enzymol 216, 376–385.
    [Google Scholar]
  16. de la Luna, S., Soria, I., Pulido, D., Ortín, J. & Jiménez, A. ( 1988; ). Efficient transformation of mammalian cells with constructs containing puromycin-resistance marker. Gene 62, 121–126.[CrossRef]
    [Google Scholar]
  17. de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R. & Subramani, S. ( 1987; ). Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7, 725–737.
    [Google Scholar]
  18. Domingo, E., Mateu, M. G., Martínez, M. A., Dopazo, J., Moya, A. & Sobrino, F. ( 1990; ). Genetic variability and antigenic diversity of foot-and-mouth disease virus. In Applied Virology Research. Virus Variation and Epidemiology, vol. 2, pp. 233–266. Edited by E. Kurstak, R. G. Marusyk, S. A. Murphy and M. H. V. Van-Regenmortel. New York: Plenum.
  19. Erickson, R. P. & Izant, J. G. (editors) ( 1992; ). Gene regulation. Biology of antisense RNA and DNA. New York: Raven Press.
  20. Gutiérrez, A., Rodriguez, A., Pintado, B. & Sobrino, F. ( 1993; ). Transient inhibition of foot-and-mouth disease virus infection of BHK-21 cells by antisense oligonucleotides directed against the second functional initiator AUG. Antiviral Res 22, 1–13.[CrossRef]
    [Google Scholar]
  21. Gutiérrez, A., Martínez-Salas, E., Pintado, B. & Sobrino, F. ( 1994; ). Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5′ and 3′ noncoding regions. J Virol 68, 7426–7432.
    [Google Scholar]
  22. Hanecak, R., Brown-Driver, V., Fox, M. C., Azad, R. F., Furusako, S., Nozaki, C., Ford, C., Sasmor, H. & Anderson, K. P. ( 1996; ). Antisense oligonucleotide inhibition of hepatitis C virus gene expression in transformed hepatocytes. J Virol 70, 5203–5212.
    [Google Scholar]
  23. Hélène, C. & Toulmé, J.-J. ( 1990; ). Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1049, 99–125.[CrossRef]
    [Google Scholar]
  24. Hildebrandt, M. & Nellen, W. ( 1992; ). Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. Cell 69, 197–204.[CrossRef]
    [Google Scholar]
  25. Knowles, N. J., Samuel, A. R., Davies, P. R., Kitching, R. P. & Donaldson, A. I. ( 2001; ). Outbreak of foot-and-mouth disease virus serotype O in the UK caused by a pandemic strain. Vet Rec 48, 258–259.
    [Google Scholar]
  26. Kolb, F. A., Westhof, E., Ehresmann, B., Ehresmann, C., Wagner, E. G. & Romby, P. ( 2001; ). Four-way junctions in antisense RNA–mRNA complexes involved in plasmid replication control: a common theme? J Mol Biol 309, 605–614.[CrossRef]
    [Google Scholar]
  27. Kühn, R., Luz, N. & Beck, E. ( 1990; ). Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J Virol 64, 4625–4631.
    [Google Scholar]
  28. Lewis, J. A., Huq, A. & Shan, B. ( 1989; ). Beta and gamma interferons acts synergistically to produce an antiviral state in cells resistant to both interferons individually. J Virol 63, 4569–4578.
    [Google Scholar]
  29. López de Quinto, S. & Martínez-Salas, E. ( 1999; ). Involvement of the aphthovirus RNA region located between the two functional AUGs in start codon selection. Virology 255, 324–336.[CrossRef]
    [Google Scholar]
  30. López de Quinto, S. & Martínez-Salas, E. ( 2000; ). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6, 1380–1392.[CrossRef]
    [Google Scholar]
  31. López de Quinto, S., Lafuente, E. & Martínez-Salas, E. ( 2001; ). IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226.[CrossRef]
    [Google Scholar]
  32. Martínez, M. A., Carrillo, C., Plana, J., Mascarella, R., Bergadá, J., Palma, E. L., Domingo, E. & Sobrino, F. ( 1988; ). Genetic and immunogenic variations among closely related isolates of foot-and-mouth disease virus. Gene 62, 75–84.[CrossRef]
    [Google Scholar]
  33. Martínez-Salas, E. & Domingo, E. ( 1995; ). Effect of expression of the aphthovirus protease 3C on viral infection and gene expression. Virology 212, 111–120.[CrossRef]
    [Google Scholar]
  34. Martínez-Salas, E., Sáiz, J. C., Dávila, M., Belsham, G. J. & Domingo, E. ( 1993; ). A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. J Virol 67, 3748–3755.
    [Google Scholar]
  35. Martínez-Salas, E., Ramos, R., Lafuente, E. & López de Quinto, S. ( 2001; ). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82, 973–984.
    [Google Scholar]
  36. Mellits, K. H., Meredith, J. M., Rohll, J. B., Evans, D. J. & Almond, J. W. ( 1998; ). Binding of a cellular factor to the 3′ untranslated region of the RNA genomes of entero- and rhinoviruses plays a role in virus replication. J Gen Virol 79, 1715–1723.
    [Google Scholar]
  37. Mizuno, T., Chou, M. Y. & Inouye, M. ( 1984; ). A unique mechanism regulating gene expression: translation inhibition by a complementary RNA transcription (micRNA). Proc Natl Acad Sci U S A 81, 1966–1970.[CrossRef]
    [Google Scholar]
  38. Mizutani, T., Hayashi, M., Maeda, A., Sasaki, N., Yamashita, T., Kasai, N. & Namioka, S. ( 1993; ). Inhibition of mouse hepatitis virus multiplication by antisense oligonucleotide, antisense RNA, sense RNA and ribozyme. Adv Exp Med Biol 342, 129–135.
    [Google Scholar]
  39. Pereira, H. G. ( 1981; ). Foot-and-mouth disease. In Virus Diseases of Food Animals, pp. 333–363. Edited by E. P. J. Gibbs. San Diego: Academic Press.
  40. Ramírez, J. C., Santarén, J. F. & Almendral, J. M. ( 1995; ). Transcriptional inhibition of the parvovirus minute virus of mice by constitutive expression of an antisense RNA targeted against the NS-1 transactivator protein. Virology 206, 57–68.[CrossRef]
    [Google Scholar]
  41. Ramos, R. & Martínez-Salas, E. ( 1999; ). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5, 1374–1383.[CrossRef]
    [Google Scholar]
  42. Rodríguez, A., Martínez-Salas, E., Dopazo, J., Dávila, M., Sáiz, J. C. & Sobrino, F. ( 1992; ). Primer design for specific diagnosis by PCR of highly variable RNA viruses: typing of foot-and-mouth disease virus. Virology 189, 363–367.[CrossRef]
    [Google Scholar]
  43. Sáiz, M., Gómez, S., Martínez-Salas, E. & Sobrino, F. ( 2001; ). Deletion or substitution of the aphthovirus 3′NCR abrogates infectivity and virus replication. J Gen Virol 82, 93–101.
    [Google Scholar]
  44. Sangar, D. V. ( 1979; ). The replication of picornaviruses. J Gen Virol 45, 1–13.[CrossRef]
    [Google Scholar]
  45. Sczakiel, G. & Pawlita, M. ( 1991; ). Inhibition of human immunodeficiency virus type 1 replication in human T cells stably expressing antisense RNA. J Virol 65, 468–472.
    [Google Scholar]
  46. Sobrino, F. & Domingo, E. ( 2001; ). Foot-and-mouth disease in Europe. EMBO Rep 2, 459–461.[CrossRef]
    [Google Scholar]
  47. Sobrino, F., Sáiz, M., Jiménez-Clavero, M. A., Núñez, J. I., Rosas, M. F., Baranowski, E. & Ley, V. ( 2001; ). Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res 32, 1–30.[CrossRef]
    [Google Scholar]
  48. Todd, S. & Semler, B. L. ( 1996; ). Structure-infectivity analysis of the human rhinovirus genomic RNA 3′ non-coding region. Nucleic Acids Res 24, 2133–2142.[CrossRef]
    [Google Scholar]
  49. Yao, Z., Zhou, Y., Feng, X., Chen, C. & Guo, J. ( 1996; ). In vivo inhibition of hepatitis B viral gene expression by antisense phosphorothioate oligodeoxynucleotides in athymic nude mice. J Viral Hepat 3, 19–22.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18668-0
Loading
/content/journal/jgv/10.1099/vir.0.18668-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error