1887

Abstract

The genetic diversity of Australian bat lyssavirus (ABL) was investigated by comparing 24 ABL isolate glycoprotein (G) gene nucleotide sequences with those of 37 lyssaviruses representing genotypes 1–6. Phylogenetic analyses indicated that ABL forms a monophyletic group separate from other lyssaviruses. This group differentiates into two clades: one associated with (flying fox) species, the other with the insectivorous bat . Calculation of percentage nucleotide identities between isolates of the two clades revealed up to 18·7 % nucleotide sequence divergence between the two ABL variants. These observations suggest that ABL is a separate lyssavirus species with a similar epidemiology to chiropteran rabies virus (RV), where two distinct ABL variants co-exist in Australia in bat species with dissimilar ecology. Analyses of selection pressures in ABL G gene sequences provided some evidence of weak positive selection within the endodomain at amino acids 499 and 501, although in general the dominant evolutionary process observed was purifying selection. This intimates that, in nature, isolates of ABL, like those of RV, are subject to relatively strong selective constraints, suggesting a stability of host species, cell tropisms and ecological conditions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18652-0
2003-02-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/2/vir840485.html?itemId=/content/journal/jgv/10.1099/vir.0.18652-0&mimeType=html&fmt=ahah

References

  1. Allworth, A., Murray, K. & Morgan, J. ( 1996; ). A human case of encephalitis due to a lyssavirus recently identified in fruit bats. Commun Dis Intell 20, 504.
    [Google Scholar]
  2. Arguin, P. M., Murray-Lillibridge, K., Miranda, M. E. G., Smith, J. S., Calaor, A. B. & Rupprecht, C. E. ( 2002; ). Serologic evidence of Lyssavirus infections among bats, the Philippines. Emerg Infect Dis 8, 258–262.[CrossRef]
    [Google Scholar]
  3. Badrane, H. & Tordo, N. ( 2001; ). Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 75, 8096–8104.[CrossRef]
    [Google Scholar]
  4. Badrane, H., Bahloul, C., Perrin, P. & Tordo, N. ( 2001; ). Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75, 3268–3276.[CrossRef]
    [Google Scholar]
  5. Bourhy, H., Kissi, B., Audry, L., Smreczak, M., Sadkowska-Todys, M., Kulonen, K., Tordo, N., Zmudzinski, J. F. & Holmes, E. C. ( 1999; ). Ecology and evolution of rabies virus in Europe. J Gen Virol 80, 2545–2557.
    [Google Scholar]
  6. Charlton, K. M., Nadin-Davis, S., Casey, G. A. & Wandeler, A. I. ( 1997; ). The long incubation period in rabies: delayed progression of infection in muscle at the site of exposure. Acta Neuropathol 94, 73–77.[CrossRef]
    [Google Scholar]
  7. Conzelmann, K. K., Cox, J. H., Schneider, L. G. & Thiel, H. J. ( 1990; ). Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175, 485–499.[CrossRef]
    [Google Scholar]
  8. Crawford-Miksza, L. K., Wadford, D. A. & Schnurr, D. P. ( 1999; ). Molecular epidemiology of enzootic rabies in California. J Clin Virol 14, 207–219.[CrossRef]
    [Google Scholar]
  9. de Mattos, C. A., Favi, M., Yung, V., Pavletic, C. & de Mattos, C. C. ( 2000; ). Bat rabies in urban centers in Chile. J Wildl Dis 36, 231–240.[CrossRef]
    [Google Scholar]
  10. Dietzschold, B., Wunner, W. H., Wiktor, T. J., Lopes, A. D., Lafon, M., Smith, C. L. & Koprowski, H. ( 1983; ). Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A 80, 70–74.[CrossRef]
    [Google Scholar]
  11. Domingo, E. & Holland, J. J. ( 1997; ). RNA virus mutations and fitness for survival. Annu Rev Microbiol 51, 151–178.[CrossRef]
    [Google Scholar]
  12. Favi, M., de Mattos, C. A., Yung, V., Chala, E., Lopez, L. R. & de Mattos, C. C. ( 2002; ). First case of human rabies in Chile caused by an insectivorous bat virus variant. Emerg Infect Dis 8, 79–81.[CrossRef]
    [Google Scholar]
  13. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  14. Felsenstein, J. ( 1993; ). phylip: Phylogeny Inference Package, version 3.52c. University of Washington, Seattle, WA, USA.
  15. Field, H., McCall, B. & Barrett, J. ( 1999; ). Australian bat lyssavirus infection in a captive juvenile black flying fox. Emerg Infect Dis 5, 438–40.[CrossRef]
    [Google Scholar]
  16. Flamand, A., Wiktor, T. J. & Koprowski, H. ( 1980; ). Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins. II. The glycoprotein. J Gen Virol 48, 105–109.[CrossRef]
    [Google Scholar]
  17. Fraser, G. C., Hooper, P. T., Lunt, R. A., Gould, A. R., Gleeson, L. J., Hyatt, A. D., Russell, G. M. & Kattenbelt, J. A. ( 1996; ). Encephalitis caused by a Lyssavirus in fruit bats in Australia. Emerg Infect Dis 2, 327–331.[CrossRef]
    [Google Scholar]
  18. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  19. Gaudin, Y., Tuffereau, C., Durrer, P., Brunner, J., Flamand, A. & Ruigrok, R. ( 1999; ). Rabies virus-induced membrane fusion. Mol Membr Biol 16, 21–31.[CrossRef]
    [Google Scholar]
  20. Gould, A. R., Hyatt, A. D., Lunt, R., Kattenbelt, J. A., Hengstberger, S. & Blacksell, S. D. ( 1998; ). Characterisation of a novel lyssavirus isolated from pteropid bats in Australia. Virus Res 54, 165–187.[CrossRef]
    [Google Scholar]
  21. Hall, L. & Richards, G. ( 2000; ). Flying Foxes: Fruit and Blossom Bats of Australia. Edited by T. J. Dawson. Australian Natural History Series. Sydney: UNSW Press.
  22. Hanna, J. N., Carney, I. K., Smith, G. A. & 7 other authors ( 2000; ). Australian bat lyssavirus infection: a second human case, with a long incubation period. Med J Aust 172, 597–599.
    [Google Scholar]
  23. Hillis, D. M. & Bull, J. J. ( 1993; ). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42, 182–192.[CrossRef]
    [Google Scholar]
  24. Holmes, E. C., Woelk, C. H., Kassis, R. & Bourhy, H. ( 2002; ). Genetic constraints and the adaptive evolution of rabies virus in nature. Virology 292, 247–257.[CrossRef]
    [Google Scholar]
  25. Hooper, P. T., Lunt, R. A., Gould, A. R. & 7 other authors ( 1997; ). A new lyssavirus – the first endemic rabies-related virus recognized in Australia. Bull Inst Pasteur 95, 209–218.[CrossRef]
    [Google Scholar]
  26. Ito, N., Takayama, M., Yamada, K., Sugiyama, M. & Minamoto, N. ( 2001a; ). Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J Virol 75, 9121–9128.[CrossRef]
    [Google Scholar]
  27. Ito, M., Arai, Y. T., Itou, T., Sakai, T., Ito, F. H., Takasaki, T. & Kurane, I. ( 2001b; ). Genetic characterization and geographic distribution of rabies virus isolates in Brazil: identification of two reservoirs, dogs and vampire bats. Virology 284, 214–222.[CrossRef]
    [Google Scholar]
  28. Ito, N., Kakemizu, M., Ito, K. A., Yamamoto, A., Yoshida, Y., Sugiyama, M. & Minamoto, N. ( 2001c; ). A comparison of complete genome sequences of the attenuated RC-HL strain of rabies virus used for production of animal vaccine in Japan, and the parental Nishigahara strain. Microbiol Immunol 45, 51–58.[CrossRef]
    [Google Scholar]
  29. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  30. Kissi, B., Badrane, H., Audry, L., Lavenu, A., Tordo, N., Brahimi, M. & Bourhy, H. ( 1999; ). Dynamics of rabies virus quasispecies during serial passages in heterologous hosts. J Gen Virol 80, 2041–2050.
    [Google Scholar]
  31. Le Mercier, P., Jacob, Y. & Tordo, N. ( 1997; ). The complete Mokola virus genome sequence: structure of the RNA-dependent RNA polymerase. J Gen Virol 78, 1571–1576.
    [Google Scholar]
  32. Lentz, T. L., Burrage, T. G., Smith, A. L., Crick, J. & Tignor, G. H. ( 1982; ). Is the acetylcholine receptor a rabies virus receptor? Science 215, 182–184.[CrossRef]
    [Google Scholar]
  33. McColl, K. A., Tordo, N. & Aguilar Setien, A. A. ( 2000; ). Bat lyssavirus infections. Rev Sci Tech 19, 177–196.
    [Google Scholar]
  34. Mebatsion, T., Schnell, M. J. & Conzelmann, K. K. ( 1995; ). Mokola virus glycoprotein and chimeric proteins can replace rabies virus glycoprotein in the rescue of infectious defective rabies virus particles. J Virol 69, 1444–1451.
    [Google Scholar]
  35. Morimoto, K., Ohkubo, A. & Kawai, A. ( 1989; ). Structure and transcription of the glycoprotein gene of attenuated HEP-Flury strain of rabies virus. Virology 173, 465–477.[CrossRef]
    [Google Scholar]
  36. Morimoto, K., Patel, M., Corisdeo, S., Hooper, D. C., Fu, Z. F., Rupprecht, C. E., Koprowski, H. & Dietzschold, B. ( 1996; ). Characterization of a unique variant of bat rabies virus responsible for newly emerging human cases in North America. Proc Natl Acad Sci U S A 93, 5653–5658.[CrossRef]
    [Google Scholar]
  37. Morimoto, K., Foley, H. D., McGettigan, J. P., Schnell, M. J. & Dietzschold, B. ( 2000; ). Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol 6, 373–381.[CrossRef]
    [Google Scholar]
  38. Nadin-Davis, S. A., Huang, W. & Wandeler, A. I. ( 1996; ). The design of strain-specific polymerase chain reactions for discrimination of the racoon rabies virus strain from indigenous rabies viruses of Ontario. J Virol Methods 57, 1–14.[CrossRef]
    [Google Scholar]
  39. Nadin-Davis, S. A., Huang, W., Armstrong, J., Casey, G. A., Bahloul, C., Tordo, N. & Wandeler, A. I. ( 2001; ). Antigenic and genetic divergence of rabies viruses from bat species indigenous to Canada. Virus Res 74, 139–156.[CrossRef]
    [Google Scholar]
  40. Noah, D. L., Drenzek, C. L., Smith, J. S. & 9 other authors ( 1998; ). Epidemiology of human rabies in the United States, 1980 to 1996. Ann Intern Med 128, 922–930.[CrossRef]
    [Google Scholar]
  41. Sacramento, D., Badrane, H., Bourhy, H. & Tordo, N. ( 1992; ). Molecular epidemiology of rabies virus in France: comparison with vaccine strains. J Gen Virol 73, 1149–1158.[CrossRef]
    [Google Scholar]
  42. Sanchez, A., Trappier, S. G., Stroher, U., Nichol, S. T., Bowen, M. D. & Feldmann, H. ( 1998; ). Variation in the glycoprotein and VP35 genes of Marburg virus strains. Virology 240, 138–146.[CrossRef]
    [Google Scholar]
  43. Smith, J. S. ( 1996; ). New aspects of rabies with emphasis on epidemiology, diagnosis, and prevention of the disease in the United States. Clin Microbiol Rev 9, 166–176.
    [Google Scholar]
  44. Smith, J. S., Orciari, L. A. & Yager, P. A. ( 1995; ). Molecular epidemiology of rabies in the United States. Semin Virol 6, 387–400.[CrossRef]
    [Google Scholar]
  45. Suzuki, Y. & Nei, M. ( 2002; ). Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 19, 501–509.[CrossRef]
    [Google Scholar]
  46. Swofford, D. L. ( 2001; ). paup*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  47. Tajima, F. & Nei, M. ( 1984; ). Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1, 269–285.
    [Google Scholar]
  48. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  49. Thoulouze, M. I., Lafage, M., Schachner, M., Hartmann, U., Cremer, H. & Lafon, M. ( 1998; ). The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72, 7181–7190.
    [Google Scholar]
  50. Tidemann, C. R., Vardon, M. J., Nelson, J. E., Speare, R. & Gleeson, L. J. ( 1997; ). Health and conservation implications of Australian bat lyssavirus. Aust Zool 30, 369–376.[CrossRef]
    [Google Scholar]
  51. Tordo, N., Poch, O., Ermine, A., Keith, G. & Rougeon, F. ( 1986; ). Walking along the rabies genome: is the large G–L intergenic region a remnant gene? Proc Natl Acad Sci U S A 83, 3914–3918.[CrossRef]
    [Google Scholar]
  52. Tordo, N., Poch, O., Ermine, A., Keith, G. & Rougeon, F. ( 1988; ). Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology 165, 565–576.[CrossRef]
    [Google Scholar]
  53. Tuffereau, C., Benejean, J., Blondel, D., Kieffer, B. & Flamand, A. ( 1998; ). Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J 17, 7250–7259.[CrossRef]
    [Google Scholar]
  54. Tuffereau, C., Desmezieres, E., Benejean, J., Jallet, C., Flamand, A., Tordo, N. & Perrin, P. ( 2001; ). Interaction of lyssaviruses with the low-affinity nerve-growth factor receptor p75NTR. J Gen Virol 82, 2861–2867.
    [Google Scholar]
  55. van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R. & Wickner, R. B. ( 2000; ). Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press.
  56. Warrilow, D., Serafin, I., Harrower, B. & Smith, G. A. ( 2002; ). Sequence analysis of an isolate from a fatal human infection with Australian bat lyssavirus. Virology 297, 109–119.[CrossRef]
    [Google Scholar]
  57. Wiktor, T. J., Gyorgy, E., Schlumberger, D., Sokol, F. & Koprowski, H. ( 1973; ). Antigenic properties of rabies virus components. J Immunol 110, 269–276.
    [Google Scholar]
  58. Woelk, C. H. & Holmes, E. C. ( 2001; ). Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV). J Mol Evol 52, 182–192.
    [Google Scholar]
  59. Woelk, C. H., Jin, L., Holmes, E. C. & Brown, D. W. ( 2001; ). Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. J Gen Virol 82, 2463–2474.
    [Google Scholar]
  60. Woelk, C. H., Pybus, O. G., Jin, L., Brown, D. W. & Holmes, E. C. ( 2002; ). Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. J Gen Virol 83, 1419–1430.
    [Google Scholar]
  61. Yang, Z. ( 1997; ). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
  62. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A. M. K. ( 2000; ). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 153, 431–449.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18652-0
Loading
/content/journal/jgv/10.1099/vir.0.18652-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error