1887

Abstract

The ∼150 amino acid C-terminal tail of the gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 (HIV-1) is generally thought to be located inside the virion. However, we show here that both monoclonal IgG and polyclonal epitope-purified IgG specific for the ERDRD epitope that lies within the C-terminal tail neutralized infectious virus. IgG was mapped to the C-terminal tail by its failure to neutralize tail-deleted virus, and by sequencing of antibody-escape mutants. The fact that antibody does not cross lipid membranes, and infectious virus is by definition intact, suggested that ERDRD was exposed on the surface of the virion. This was confirmed by reacting virus and IgG, separating virus and unbound IgG by centrifugation, and showing that virus was neutralized to essentially the same extent as virus that had been in constant contact with antibody. Epitope exposure on virions was independent of temperature and therefore constitutive. Monoclonal antibodies specific to epitopes PDRPEG and IEEE, upstream of ERDRD, also bound to virions, suggesting that they too were located externally. Protease digestion destroyed the ERDRD and PDRPEG epitopes, consistent with their proposed external location. Altogether these data are consistent with part of the C-terminal tail of gp41 being exposed on the outside of the virion. Possible models of the structure of the gp41 tail, taking these observations into account, are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18630-0
2003-03-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/3/vir840591.html?itemId=/content/journal/jgv/10.1099/vir.0.18630-0&mimeType=html&fmt=ahah

References

  1. Abacioglu, Y. H., Fouts, T. R., Laman, J. D., Classen, E., Pincus, S. H., Moore, J. P., Roby, C. A., Kamin-Lewis, R. & Lewis, G. K. ( 1994; ). Epitope mapping and topology of baculovirus-expressed HIV-1 gp160 determined with a panel of murine monoclonal antibodies. AIDS Res Hum Retrovir 10, 371–381.[CrossRef]
    [Google Scholar]
  2. Arroyo, J., Boceta, M., González, M. E., Michel, M. & Carrasco, L. ( 1995; ). Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. J Virol 69, 4095–4102.
    [Google Scholar]
  3. Berlioz-Torrent, C., Shacklett, B. L., Erdtmann, L., Delamarre, L., Bouchaert, I., Sonigo, P., Dokhelar, M. C. & Benarous, R. ( 1999; ). Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adapter complexes modulate intracellular and cell surface expression of envelope glycoprotein. J Virol 73, 1350–1361.
    [Google Scholar]
  4. Blacklow, S. C., Lu, M. & Kim, P. S. ( 1995; ). A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry 34, 14955–14962.[CrossRef]
    [Google Scholar]
  5. Bukrinskaya, A. G. & Sharova, N. K. ( 1990; ). Unusual features of protein interaction in human immunodeficiency virus (HIV) virions. Arch Virol 110, 287–293.[CrossRef]
    [Google Scholar]
  6. Buratti, E., Tisminetzky, S. G., Scodeller, E. S. & Baralle, F. E. ( 1996; ). Conformational display of two neutralizing epitopes of HIV-1 gp41 in the flock house virus capsid protein. J Immunol Methods 197, 7–18.[CrossRef]
    [Google Scholar]
  7. Buratti, E., Tisminetzky, S. G., D'Agaro, P. & Baralle, F. E. ( 1997; ). A neutralizing monoclonal antibody previously mapped exclusively on human immunodeficiency virus type 1 gp41 recognizes an epitope in p17 sharing the core sequence IEEE. J Virol 71, 2457–2462.
    [Google Scholar]
  8. Buratti, E., McLain, L., Tisminetzky, S. G., Cleveland, S. M., Dimmock, N. J. & Baralle, F. E. ( 1998; ). The neutralizing antibody response against a conserved region of HIV-1 gp41 (amino acid residues 731–752) is uniquely directed against a conformational epitope. J Gen Virol 79, 2709–2716.
    [Google Scholar]
  9. Burton, D. R. ( 1997; ). A vaccine for HIV type 1: the antibody perspective. Proc Natl Acad Sci U S A 94, 10018–10023.[CrossRef]
    [Google Scholar]
  10. Burton, D. R., Pyati, J., Koduri, R. & 15 other authors ( 1994; ). Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027.[CrossRef]
    [Google Scholar]
  11. Celma, C. C. P., Manrique, J. M., Affranchino, J. L., Hunter, E. & González, S. A. ( 2001; ). Domains in the simian immunodeficiency virus gp41 cytoplasmic tail required for envelope incorporation into particles. Virology 283, 253–261.[CrossRef]
    [Google Scholar]
  12. Chan, D. C., Fass, D., Berger, J. & Kim, P. S. ( 1997; ). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273.[CrossRef]
    [Google Scholar]
  13. Chanh, T. C., Dreesman, G., Kanda, P., Linette, G. P., Sparrow, J. T., Ho, D. D. & Kennedy, R. C. ( 1986; ). Induction of anti-HIV neutralizing antibodies by synthetic peptides. EMBO J 5, 3065–3071.
    [Google Scholar]
  14. Chernomordik, L., Chanturiya, A. N., Suss-Toby, E., Nora, E. & Zimmerberg, J. ( 1994; ). An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J Virol 68, 7115–7123.
    [Google Scholar]
  15. Cleveland, S. M., Buratti, E., Jones, T. D., North, P., Baralle, F. E., McLain, L., McInerney, T. L., Durrani, Z. & Dimmock, N. J. ( 2000a; ). Immunogenic and antigenic dominance of a non-neutralizing epitope over a highly conserved neutralizing epitope in the gp41 transmembrane envelope glycoprotein of HIV-1: its deletion leads to a strong neutralizing antibody response. Virology 266, 66–78.[CrossRef]
    [Google Scholar]
  16. Cleveland, S. M., Jones, T. D. & Dimmock, N. J. ( 2000b; ). Properties of a neutralizing antibody that recognizes a conformational form of epitope ERDRD in the C-terminal tail of human immunodeficiency virus type 1. J Gen Virol 81, 1251–1260.
    [Google Scholar]
  17. Comardelle, A. M., Norris, C. H., Plymale, D. R. & 8 other authors ( 1997; ). A synthetic peptide corresponding to the carboxyterminus of human immunodeficiency virus type 1 transmembrane protein induces alterations in the ionic permeability of Xenopus laevis oocytes. AIDS Res Hum Retrovir 13, 1525–1532.[CrossRef]
    [Google Scholar]
  18. Cosson, P. ( 1996; ). Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J 15, 5783–5788.
    [Google Scholar]
  19. Dalgleish, A. G., Chanh, T. C., Kennedy, R. C., Kanda, P., Clapham, P. R. & Weiss, R. A. ( 1988; ). Neutralization of diverse strains of HIV-1 by monoclonal antibodies raised against a gp41 synthetic peptide. Virology 165, 209–215.[CrossRef]
    [Google Scholar]
  20. Davis, D., Chaudri, B., Stephens, D. M., Carne, C. A., Willers, C. & Lachmann, P. J. ( 1990; ). The immunodominance of epitopes within the transmembrane protein (gp41) of human immunodeficiency virus type 1 may be related by the host's previous exposure to similar epitopes on unrelated antigens. J Gen Virol 71, 1975–1983.[CrossRef]
    [Google Scholar]
  21. Di Fiore, P. P. & Gill, G. N. ( 1999; ). Endocytosis and mitogenic signalling. Curr Opin Cell Biol 11, 483–488.[CrossRef]
    [Google Scholar]
  22. Dorfman, T., Mammano, F., Haseltine, W. A. & Göttlinger, H. G. ( 1994; ). Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope protein. J Virol 68, 1689–1696.
    [Google Scholar]
  23. Durrani, Z., McInerney, T. L., McLain, L., Jones, T., Bellaby, T., Brennan, F. R. & Dimmock, N. J. ( 1998; ). Intranasal immunization with a plant virus expressing a peptide from HIV-1 gp41 stimulates better mucosal and systemic HIV-1-specific IgA and IgG than oral immunization. J Immunol Methods 220, 93–103.[CrossRef]
    [Google Scholar]
  24. Edwards, T. G., Hoffman, T. L., Baribaud, F. & 7 other authors ( 2001; ). Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J Virol 75, 5230–5239.[CrossRef]
    [Google Scholar]
  25. Edwards, T. G., Wyss, S., Reeves, J. D., Zolla-Pazner, S., Hoxie, J. A., Doms, R. W. & Baribaud, F. ( 2002; ). Truncation of the cytoplasmic domain induces exposure of conserved regions in the ectodomain of human immunodeficiency virus type 1 envelope protein. J Virol 76, 2683–2691.[CrossRef]
    [Google Scholar]
  26. Eisenberg, D. & Wesson, M. ( 1990; ). The most highly amphiphilic alpha-helices include two amino acid segments in human immunodeficiency virus glycoprotein 41. Biopolymers 29, 171–177.[CrossRef]
    [Google Scholar]
  27. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. ( 1982; ). The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299, 371–374.[CrossRef]
    [Google Scholar]
  28. Evans, D. J., McKeating, J. A., Meredith, J. M., Burke, K. L., Katrak, K., Ferguson, M., Minor, P. D., Weiss, R. A. & Almond, J. W. ( 1989; ). An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339, 385–388.[CrossRef]
    [Google Scholar]
  29. Freed, E. O. & Martin, M. A. ( 1995a; ). The role of the human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J Biol Chem 270, 23883–23886.[CrossRef]
    [Google Scholar]
  30. Freed, E. O. & Martin, M. A. ( 1995b; ). Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69, 1984–1989.
    [Google Scholar]
  31. Freed, E. O. & Martin, M. A. ( 1996; ). Domains on the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70, 341–351.
    [Google Scholar]
  32. Fultz, P. N., Vance, P. J., Endres, M. J. & 8 other authors ( 2001; ). In vivo attenuation of simian immunodeficiency virus by disruption of a tyrosine-dependent sorting signal in the envelope glycoprotein cytoplasmic tail. J Virol 75, 278–291.[CrossRef]
    [Google Scholar]
  33. Gallagher, W. R., Henderson, L. A., Fermin, C. & 7 other authors ( 1992; ). Membrane interactions of human immunodeficiency virus: attachment, fusion, and cytopathology. Adv Membrane Fluidity 6, 113–142.
    [Google Scholar]
  34. Gawrisch, K., Han, K.-H., Yang, J., Bergelson, L. D. & Ferretti, J. A. ( 1993; ). Interaction of peptide fragment 828–848 of the envelope glycoprotein of human immunodeficiency virus type 1 with lipid bilayers. Biochemistry 32, 3112–3118.[CrossRef]
    [Google Scholar]
  35. Haffar, O. K., Dowbenko, D. & Berman, P. W. ( 1988; ). Topogenic analysis of the HIV-1 envelope glycoprotein, gp160, in microsomal membranes. J Cell Biol 107, 1677–1687.[CrossRef]
    [Google Scholar]
  36. Haffar, O. K., Dowbenko, D. & Berman, P. W. ( 1991; ). The cytoplasmic tail of HIV-1 gp160 contains regions that associate with cellular membranes. Virology 180, 439–441.[CrossRef]
    [Google Scholar]
  37. Heilker, R., Spiess, M. & Crottet, P. ( 1999; ). Recognition of sorting signals by clathrin adapters. Bioessays 7, 558–567.
    [Google Scholar]
  38. Iwatani, Y., Ueno, T., Nishimura, A., Zhang, X., Hattori, T., Ishimoto, A., Ito, M. & Sakai, H. ( 2001; ). Modification of virus infectivity by cytoplasmic tail of HIV-1 TM protein. Virus Res 74, 75–87.[CrossRef]
    [Google Scholar]
  39. Jackson, N. A. C., Levi, M., Wahren, B. & Dimmock, N. J. ( 1999; ). Mechanism of action of a 17 amino acid microantibody specific for the V3 loop that neutralizes free HIV-1 virions. J Gen Virol 80, 225–236.
    [Google Scholar]
  40. Kalyan, N. K., Lee, S.-G., Wilhelm, J. & 7 other authors ( 1994; ). Immunogenicity of recombinant influenza virus haemagglutinin carrying peptides from the envelope protein of human immunodeficiency virus type 1. Vaccine 12, 753–760.[CrossRef]
    [Google Scholar]
  41. Kennedy, R. C., Henkel, R. D., Pauletti, D., Allan, J. S., Lee, T. H., Essex, M. & Dreesman, G. R. ( 1986; ). Antiserum to a synthetic peptide recognizes the HTLV-III envelope glycoprotein. Science 231, 1556–1559.[CrossRef]
    [Google Scholar]
  42. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.[CrossRef]
    [Google Scholar]
  43. Levy, J. A. ( 1998; ). HIV and the Pathogenesis of AIDS, 2nd edn. Herndon, VA: ASM Press.
  44. Li, Q., Yafal, A. G., Lee, Y. M.-H., Hogle, J. & Chow, M. ( 1994; ). Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol 68, 3965–3970.
    [Google Scholar]
  45. Lifson, S. & Sander, M. ( 1979; ). Antiparallel and parallel β-strands differ in amino acid residue preferences. Nature 282, 109–111.[CrossRef]
    [Google Scholar]
  46. Lu, M., Blacklow, S. C. & Kim, P. S. ( 1995; ). A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2, 1074–1082.
    [Google Scholar]
  47. McInerney, T. L., Brennan, F. R., Jones, T. D. & Dimmock, N. J. ( 1999; ). Analysis of the ability of five adjuvants to enhance immune responses to a chimeric plant virus displaying a HIV-1 peptide. Vaccine 17, 1359–1368.[CrossRef]
    [Google Scholar]
  48. McKeating, J. A., Cordell, J. A., Dean, C. J. & Balfe, P. ( 1992; ). Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type 1 gp120. Virology 191, 732–742.[CrossRef]
    [Google Scholar]
  49. McLain, L. & Dimmock, N. J. ( 1994; ). Single- and multi-hit kinetics of immunoglobulin G neutralization of human immunodeficiency virus type 1 by monoclonal antibodies. J Gen Virol 75, 1457–1460.[CrossRef]
    [Google Scholar]
  50. McLain, L., Porta, C., Lomonossoff, G. P., Durrani, Z. & Dimmock, N. J. ( 1995; ). Human immunodeficiency virus type 1 neutralizing antibodies raised to a gp41 peptide expressed on the surface of a plant virus. AIDS Res Hum Retrovir 11, 327–334.[CrossRef]
    [Google Scholar]
  51. McLain, L., Durrani, Z., Wisniewski, L. A., Porta, C., Lomonossoff, G. P. & Dimmock, N. J. ( 1996a; ). A plant virus–HIV-1 chimera stimulates antibody that neutralizes HIV-1. In Vaccine 96, pp. 311–316. Edited by F. Brown, D. R. Burton, J. Collier, J. Mekalonos & E. Norrby. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  52. McLain, L., Durrani, Z., Wisniewski, L. A., Porta, C., Lomonossoff, G. P. & Dimmock, N. J. ( 1996b; ). Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22-mer amino acid peptide expressed on the surface of a plant virus. Vaccine 14, 799–810.[CrossRef]
    [Google Scholar]
  53. McLain, L., Brown, J. L., Cheung, L., Reading, S. A., Parry, C., Jones, T. D., Cleveland, S. M. & Dimmock, N. J. ( 2001; ). Different effects of a single amino acid substitution on three epitopes in the gp41 C-terminal loop of a neutralizing antibody escape mutant of human immunodeficiency virus type 1. Arch Virol 146, 157–166.[CrossRef]
    [Google Scholar]
  54. Mammano, F., Kondo, E., Sodroski, J., Bukovsky, A. & Göttlinger, H. G. ( 1995; ). Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic tails. J Virol 69, 3824–3830.
    [Google Scholar]
  55. Manrique, J. M., Celma, C. C. P., Affranchino, J. L., Hunter, E. & González, S. A. ( 2001; ). Small variations in the length of the cytoplasmic domain of the simian immunodeficiency virus transmembrane protein drastically affect envelope incorporation and virus entry. AIDS Res Hum Retrovir 17, 1615–1624.[CrossRef]
    [Google Scholar]
  56. Miller, M. A., Garry, R. F., Jaynes, G. J. & Montelaro, R. C. ( 1991; ). A structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides. AIDS Res Hum Retrovir 7, 511–519.[CrossRef]
    [Google Scholar]
  57. Miller, M. A., Cloyd, M. W., Liebmann, J., Rinaldo, C. R., Islam, K. R., Wang, S. Z. S., Mietzner, T. A. & Montelaro, R. C. ( 1993; ). Alterations in cell membrane permeability by the lentiviral peptide (LLP-1) of HIV-1 transmembrane protein. Virology 196, 89–100.[CrossRef]
    [Google Scholar]
  58. Modrow, S., Hahn, B. H., Shaw, G. M., Gallo, R. C., Wong-Staal, F. & Wolf, H. ( 1987; ). Computer assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions. J Virol 61, 570–578.
    [Google Scholar]
  59. Mulligan, M. J., Yamshchikov, G. V., Ritter, G. D., Gao, F., Jin, M. J., Nail, C. D., Spies, C. P., Hahn, B. H. & Compans, R. W. ( 1992; ). Cytoplasmic domain truncation enhances fusion activity by the exterior glycoprotein complex of human immunodeficiency virus type 2 in certain cell types. J Virol 66, 3971–3975.
    [Google Scholar]
  60. Murakami, T. & Freed, E. O. ( 2000a; ). Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix protein and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 74, 3548–3554.[CrossRef]
    [Google Scholar]
  61. Murakami, T. & Freed, E. O. ( 2000b; ). The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci U S A 97, 343–348.[CrossRef]
    [Google Scholar]
  62. Muster, T., Steindl, F., Purtscher, M., Trkola, A., Klima, A., Himmler, G., Rüker, F. & Katinger, H. ( 1993; ). A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67, 6642–6647.
    [Google Scholar]
  63. Newton, S. M. C., Joys, T. M., Anderson, S. A., Kennedy, R. C., Hovi, M. E. & Stocker, B. A. D. ( 1995; ). Expression and immunogenicity of an 18-residue epitope of HIV-1 gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res Microbiol 146, 203–216.[CrossRef]
    [Google Scholar]
  64. Niedrig, M., Bröker, M., Walter, G., Stüber, W., Harthus, H.-P., Mehdi, S., Gelderblom, H. R. & Pauli, G. ( 1992; ). Murine monoclonal antibodies directed against the transmembrane protein gp41 of human immunodeficiency virus type 1 enhance its infectivity. J Gen Virol 73, 951–954.[CrossRef]
    [Google Scholar]
  65. Piller, S. C., Dubay, J. W., Derdeyn, C. A. & Hunter, E. ( 2000; ). Mutational analysis of conserved domains within the cytoplasmic tail of gp41 from human immunodeficiency virus type 1: effects on glycoprotein incorporation and infectivity. J Virol 74, 11717–11723.[CrossRef]
    [Google Scholar]
  66. Pincus, S. H., Messer, K. G., Schwartz, D. H., Lewis, G. K., Graham, B. S., Blattner, W. A. & Fisher, G. ( 1993; ). Differences in the antibody response to human immunodeficiency virus type 1 envelope protein (gp160) in infected laboratory workers and vaccinees. J Clin Invest 91, 1987–1996.[CrossRef]
    [Google Scholar]
  67. Ratner, L., Haseltine, W., Patarca, R. & 16 other authors ( 1985; ). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–284.[CrossRef]
    [Google Scholar]
  68. Sattentau, Q. J., Zolla-Pazner, S. & Poignard, P. ( 1995; ). Epitopes exposed on functional, oligomeric gp41 molecules. Virology 206, 713–717.[CrossRef]
    [Google Scholar]
  69. Sauter, M. M., Pelchen-Matthews, A., Bron, R. & 8 other authors ( 1996; ). An internalization signal in the simian immunodeficiency virus transmembrane protein cytoplasmic domain modulates expression of envelope glycoproteins on the cell surface. J Cell Biol 132, 795–811.[CrossRef]
    [Google Scholar]
  70. Schirmer, T. ( 1998; ). General and specific porins from bacterial outer membranes. J Struct Biol 121, 101–109.[CrossRef]
    [Google Scholar]
  71. Schirmer, T. & Cowan, S. W. ( 1993; ). Prediction of membrane-spanning β-strands and its application to maltoporin. Protein Sci 2, 1361–1363.[CrossRef]
    [Google Scholar]
  72. Sodroski, J., Goh, W. C., Rosen, C., Campbell, K. & Haseltine, W. A. ( 1986; ). Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322, 470–474.[CrossRef]
    [Google Scholar]
  73. Spies, C. P., Ritter, G. D., Mulligan, M. J. & Compans, R. W. ( 1994; ). Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein alters the conformation of the external domain. J Virol 68, 585–591.
    [Google Scholar]
  74. Srinivas, S. K., Srinivas, R. V., Anatharamaiah, G. M., Segrest, J. P. & Compans, R. W. ( 1992; ). Membrane interactions of synthetic peptides corresponding to amphipathic helical segments of the human immunodeficiency virus type 1 with lipid bilayers. J Biol Chem 267, 7121–7127.
    [Google Scholar]
  75. Vella, C., Minor, P. D., Weller, I. V. D., Jenkins, O., Evans, D. & Almond, J. ( 1991; ). Recognition of poliovirus/HIV chimeras by antisera from individuals with HIV infection. AIDS 5, 425–430.[CrossRef]
    [Google Scholar]
  76. Vella, C., Ferguson, M., Dunn, G., Meloen, R., Langedijk, H., Evans, D. & Minor, P. D. ( 1993; ). Characterization and primary structure of a human immunodeficiency virus type 1 (HIV-1) neutralization domain as presented by a poliovirus type 1/HIV-1 chimera. J Gen Virol 74, 2603–2607.[CrossRef]
    [Google Scholar]
  77. Venable, R. M., Pastor, R. W., Brooks, B. R. & Carson, F. W. ( 1989; ). Theoretically determined three-dimensional structure for amphipathic segments of the HIV-1 gp41 envelope protein. AIDS Res Hum Retrovir 5, 7–22.[CrossRef]
    [Google Scholar]
  78. Vzorov, A. N. & Compans, R. W. ( 2000; ). Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. J Virol 74, 8219–8225.[CrossRef]
    [Google Scholar]
  79. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. ( 1997; ). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430.[CrossRef]
    [Google Scholar]
  80. Wilk, T., Pfeiffer, T. & Bosch, V. ( 1992; ). Retained in vitro infectivity and cytopathogenicity of HIV-1 despite truncation of the C-terminal tail of the env gene product. Virology 189, 167–177.[CrossRef]
    [Google Scholar]
  81. Wyma, D. J., Kotov, A. & Aiken, C. ( 2000; ). Evidence for a stable interaction of gp41 with Pr55Gag in immature human immunodeficiency virus type 1 particles. J Virol 74, 9381–9387.[CrossRef]
    [Google Scholar]
  82. Yu, X., Yuan, X., McLane, M. F., Lee, T.-H. & Essex, M. ( 1993; ). Mutations in the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein impair the incorporation of Environ proteins into mature virions. J Virol 67, 213–221.
    [Google Scholar]
  83. Zhang, H., Dornadula, G., Alur, P., Laughlin, M. A. & Pomerantz, R. J. ( 1996; ). Amphipathic domains in the C terminus of the transmembrane protein (gp41) permeabilize HIV-1 virions: a molecular mechanism underlying natural endogenous reverse transcription. Proc Natl Acad Sci U S A 93, 12519–12524.[CrossRef]
    [Google Scholar]
  84. Zingler, K. & Littman, D. R. ( 1993; ). Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases Environ incorporation into particles and fusogenicity and infectivity. J Virol 67, 2824–2831.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18630-0
Loading
/content/journal/jgv/10.1099/vir.0.18630-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error