A glucocorticoid response element in the LTR U3 region of Friend murine leukaemia virus variant FIS-2 enhances virus production and is a major determinant for sex differences in susceptibility to FIS-2 infection Free

Abstract

The nucleotide sequence of the Friend murine leukaemia virus variant FIS-2 LTR has high identity with the closely related Friend murine leukaemia virus (F-MuLV) LTR, except for the deletion of one direct repeat, a few point mutations and the generation of a glucocorticoid response element (GRE) in the U3 region. The GRE can mediate gene induction by glucocorticoids, mineral corticoids, progesterone and androgens, and it has been shown that incorporation of a GRE(s) within the LTR can increase the transcriptional activity of retroviral enhancers. We have previously reported an increased early virus replication in male mice compared with female mice when infected with a virus containing the FIS-2 LTR and have proposed that the GRE might contribute to this sex difference. In the present study, we introduced a single point mutation in the GRE and performed comparative studies in NIH 3T3 cells and in young adult male and female NMRI mice. We found that significantly more virus was produced from NIH 3T3 cells infected with wt FIS-2 than from cells infected with the FIS-2 GRE mutant and that this difference was further augmented by glucocorticoids. The glucocorticoid antagonist RU486 inhibited virus production in a dose-dependent manner. The wt FIS-2 disseminated significantly faster than the FIS-2 GRE mutant in both male and female mice. There was no significant difference in the dissemination rate between male and female mice infected with the FIS-2 GRE mutant. Hence, the GRE in the FIS-2 LTR is one determinant of the significant sex difference in susceptibility to FIS-2 infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18625-0
2003-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/4/vir840907.html?itemId=/content/journal/jgv/10.1099/vir.0.18625-0&mimeType=html&fmt=ahah

References

  1. Archer T. K., Lefebvre P., Wolford R. G., Hager G. L. 1992; Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576
    [Google Scholar]
  2. Archer T. K., Fryer C. J., Lee H. L., Zaniewski E., Liang T., Mymryk J. S. 1995; Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo. J Steroid Biochem Mol Biol 53:421–429
    [Google Scholar]
  3. Azpiroz A., Garmendia L., Fano E., Sanchez-Martin J. R. 2002; Relations between aggressive behaviour, immune activity, and disease susceptibility. Aggress Violent Behav 258:1–21
    [Google Scholar]
  4. Beato M., Chalepakis G., Schauer M., Slater E. P. 1989; DNA regulatory elements for steroid hormones. J Steroid Biochem 32:737–748
    [Google Scholar]
  5. Belikov S., Gelius B., Almouzni G., Wrange Ö. 2000; Hormone activation induces nucleosome positioning in vivo. EMBO J 19:1023–1033
    [Google Scholar]
  6. Belikov S., Gelius B., Wrange Ö. 2001; Hormone-induced nucleosome positioning in the MMTV promotor is reversible. EMBO J 20:2802–2811
    [Google Scholar]
  7. Bruland T., Dai H. Y., Lavik L. A. S., Kristiansen L. I., Dalen A. 2001; Gender-related differences in susceptibility, early virus dissemination and immunosuppression in mice infected with Friend murine leukaemia virus variant FIS-2. J Gen Virol 82:1821–1827
    [Google Scholar]
  8. Bruland T., Dai H. Y., Lavik L. A. S., Dalen A. 2003; Early dissemination rates of Friend leukaemia virus variants correlate with late pathogenesis. APMIS (in Press)
    [Google Scholar]
  9. Cato C. B., Miksicek R., Schutz G., Arnemann J., Beato M. 1986; The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO J 5:2237–2240
    [Google Scholar]
  10. Celander D., Hus B. L., Haseltine W. A. 1988; Regulatory elements within the murine leukemia virus enhancer regions mediate glucocorticoid responsiveness. J Virol 62:1314–1322
    [Google Scholar]
  11. Chesebro B., Wehrly K., Cloyd M., Britt W., Portis J., Collins J., Nishio J. 1981; Characterization of mouse monoclonal antibodies specific for Friend murine leukemia virus-induced erythroleukemia cells: Friend-specific antigens. Virology 112:131–144
    [Google Scholar]
  12. Coffin J. M., Huges S. H., Varmus H. E. 1997; The interactions of retroviruses and their hosts. In Retroviruses pp  333–341 Edited by Coffin J. M., Huges S. H., Varmus H. E. Cold Spring Habor, NY: Cold Spring Habor Laboratory;
    [Google Scholar]
  13. Dai H. Y., Faxvaag A., Troseth G. I., Aarseth H., Dalen A. 1994; Molecular cloning and characterization of an immunosuppressive and weakly oncogenic variant of Friend murine leukemia virus, FIS-2. J Virol 68:6976–6984
    [Google Scholar]
  14. Dai H. Y., Troseth G. I., Gunleksrud M., Bruland T., Solberg L. A., Aarseth H., Kristiansen L. I., Dalen A. 1998; Identification of genetic determinants responsible for the rapid immunosuppressive activity and the low leukemogenic potential of a variant of Friend leukemia virus, FIS-2. J Virol 72:1244–1251
    [Google Scholar]
  15. Darbre P., Page M., King R. J. 1986; Androgen regulation by the long terminal repeat of mouse mammary tumor virus. Mol Cell Biol 6:2847–2854
    [Google Scholar]
  16. DeFranco D., Yamamoto K. R. 1986; Two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer. Mol Cell Biol 6:993–1001
    [Google Scholar]
  17. Deroo B. J., Archer T. K. 2001; Glucocorticoid receptor-mediated chromatin remodelling in vivo. Oncogene 20:3030–3046
    [Google Scholar]
  18. Dréau D., Sonnenfeld G., Fowler N., Morton D. S., Lyte M. 1999; Effects of social conflicts on immune responses and E. coli growth within closed chambers in mice. Physiol Behav 67:133–140
    [Google Scholar]
  19. Evans J. S., Nims T., Cooly J., Bradley W., Jagodzinski L., Zhou S., Melcher G. P., Burke D. S., Vahey M. 1997; Serum levels of virus burden in early-stage human immunodeficiency virus type-1 disease in women. J Infect Dis 175:795–800
    [Google Scholar]
  20. Faxvaag A., Dai H. Y., Aarseth H., Dalen A. B. 1993; A low oncogenic variant of Friend murine leukemia virus with strong immunosuppressive properties. Arch Virol 131:265–275
    [Google Scholar]
  21. Gandhi M., Bacchetti P., Miotti P., Quinn T. C., Veronese F., Greenblatt R. M. 2002; Does patient sex affect human immunodeficiency virus level?. Clin Infect Dis 35:313–322
    [Google Scholar]
  22. Goff S. P., Traktman P., Baltimore D. 1981; Isolation and properties of Moloney murine leukemia virus mutants: use of a rapid assay for release of virion reverse transcriptase. J Virol 38:239–248
    [Google Scholar]
  23. Golde D. W., Bersch N., Lippman M. E., Friend C. 1979; Detection of glucocorticoid receptors on Friend erythroleukemia cells. Proc Natl Acad Sci U S A 76:3515–3517
    [Google Scholar]
  24. Golemis E., Li Y., Hopkins N. 1990; Alignment of U3 region sequence of mammalian C-type viruses: identification of highly conserved motifs and implications for enhancer design. J Virol 64:534–542
    [Google Scholar]
  25. Grist N. R., Ross C. A., Bell E. J. 1990; Neutralization tests. In Diagnostic Methods Clinical Virology. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  26. Gronemeyer H. 1992; Control of transcription by steroid hormone receptors. FASEB J 6:2524–2529
    [Google Scholar]
  27. Hammond K. D., Torrance J. M., DiDomencio M. 1987; Glucocorticoid receptors in murine erythroleukaemic cells. J Recept Res 7:667–678
    [Google Scholar]
  28. Höck W., Martin F., Jaggi R., Groner B. 1989; Regulation of glucocorticoid receptor activity. J Steroid Biochem 34:71–78
    [Google Scholar]
  29. Kino T., Gragerov A., Kopp J. B., Stauber R. H., Pavlakis G. N., Chrousos G. P. 1999; The HIV-1 virion-associated protein Vpr is a coactivator of the human glucocorticoid receptor. J Exp Med 189:51–61
    [Google Scholar]
  30. Kino T., Kopp J. B., Chrousos G. P. 2000; Glucocorticoids suppress human immunodeficiency virus type-1 long terminal repeat activity in a cell type-specific, glucocorticoid receptor-mediated fashion: direct protective effects at variance with clinical phenomenology. J Steroid Biochem Mol Biol 75:283–290
    [Google Scholar]
  31. Klein S. L. 2000; The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev 24:627–638
    [Google Scholar]
  32. Kolesnitchenko V., Snart R. S. 1992; Regulatory elements in the human immunodeficiency virus type 1 long terminal repeat LTR (HIV-1) responsive to steroid hormone stimulation. AIDS Res Hum Retroviruses 8:1977–1980
    [Google Scholar]
  33. Lewis P. F., Emerman M. 1994; Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516
    [Google Scholar]
  34. Lyles C. M., Dorrucci M., Vlahov D. 7 other authors 1999; Longitudinal human immunodeficiency virus type 1 load in the Italian seroconversion study: correlates and temporal trends of virus load. J Infect Dis 180:1018–1024
    [Google Scholar]
  35. Manley N. R., O'Connell M. A., Sharp P. A., Hopkins N. 1989; Nuclear factors that bind to the enhancer region of nondefective Friend murine leukemia virus. J Virol 63:4210–4223
    [Google Scholar]
  36. Miksicek R., Heber A., Schmid W., Danesch U., Posseckert G., Beato M., Schuts G. 1986; Glucocorticoid responsiveness of the transcriptional enhancer of Moloney murine sarcoma virus. Cell 46:283–290
    [Google Scholar]
  37. Miller A. H., Spencer R. L., Pearce B. D., Pisell T. L., Azrieli Y., Tanapat P., Moday H., Rhee R., McEwan B. S. 1998; Glucocorticoid receptors are differently expressed in the cells and tissues of the immune system. Cell Immunol 186:45–54
    [Google Scholar]
  38. Mitra D., Sikider S. K., Leurence J. 1995; Role of glucocorticoid receptor binding sites in the human immunodeficiency virus type 1 long terminal repeat in steroid-mediated suppression of HIV gene expression. Virology 214:512–521
    [Google Scholar]
  39. Mosmann T. 1983; Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63
    [Google Scholar]
  40. Nelson C. C., Hendy S. C., Shukin R. J., Cheng H., Bruchovsky N., Koop B. F., Rennie P. S. 1999; Determinants of DNA sequence specificity and the androgen, progesterone, and glucocorticoid receptors: evidence for differential steroid receptor response elements. Mol Endocrinol 13:2090–2107
    [Google Scholar]
  41. Niermann G. L., Buehring G. C. 1997; Hormone regulation of bovine leukemia virus via the long terminal repeat. Virology 239:249–258
    [Google Scholar]
  42. Otten A. D., Sanders M. M., McKnight G. S. 1988; The MMTV LTR promotor is induced by progesterone and dihydrotestosterone but not by estrogen. Mol Endocrinol 2:143–147
    [Google Scholar]
  43. Padgett D. A., Sheridan J. F., Dornet J., Berntson G. G., Candelora J., Glaser R. 1998; Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci U S A 95:7231–7235
    [Google Scholar]
  44. Refaeli Y., Levy D. N., Weiner D. B. 1995; The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product. Proc Natl Acad Sci U S A 92:3621–3625
    [Google Scholar]
  45. Russo F. O., Patel P. C., Ventura A. V., Pereira C. A. 1999; HIV long terminal repeat modulation by glucocorticoids in monocytic and lymphocytic cell lines. Virus Res 64:87–94
    [Google Scholar]
  46. Schüle R., Muller M., Kaltschmidt C., Renkawitz R. 1988; Many transcription factors interact synergistically with steroid receptors. Science 242:1418–1420
    [Google Scholar]
  47. Sherman M. P., de Noronha C. M. C., Pearche D., Greene W. C. 2000; Human immunodeficiency virus type 1 Vpr contains two leucine-rich helices that mediate glucocorticoid receptor coactivation independently of its effect on the G2 cell cycle arrest. J Virol 74:8159–8165
    [Google Scholar]
  48. Soudeyns H., Geleziunas R., Shyamala G., Hiscott J., Wainberg M. A. 1993; Identification of a novel glucocorticoid element within the genome of the human immunodeficiency virus type 1. Virology 194:758–768
    [Google Scholar]
  49. Speck N. A., Baltimore D. 1987; Six distinct nuclear factors interact with 75-base-pair direct repeat of the Moloney murine leukemia virus enhancer. Mol Cell Biol 7:503–517
    [Google Scholar]
  50. Sterling T. R., Lyles C. M., Vlahov D., Astemborski J. 1999; Sex difference in longitudinal human immunodeficiency virus type 1 levels among seroconverters. J Infect Dis 180:666–672
    [Google Scholar]
  51. Udupa K. B., Crabtree H. M., Lipschitz D. A. 1986; In vitro culture of proerythroblasts: characterization of proliferative response to erythropoietin and steroids. Br J Haematol 62:705–714
    [Google Scholar]
  52. Vanitharani R., Mahalingam S., Rafaeli Y., Singh S. P., Srinivasan A., Weiner D. B., Ayyavoo V. 2001; HIV-1 Vpr transactivates LTR-directed expression through sequences present within −278 to −176 and increases virus replication in vitro . Virology 289:334–342
    [Google Scholar]
  53. von Lindern M., Zauner W., Mellitzer G., Steinlein P., Fritsch G., Huber K., Löwenberg B., Beug H. 1999; The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Hematopoiesis 94:550–559
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18625-0
Loading
/content/journal/jgv/10.1099/vir.0.18625-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed