1887

Abstract

Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and plays a critical role in EBV-induced transformation. To identify the cellular proteins associating with EBNA-LP, we performed a yeast two-hybrid screen using EBNA-LP cDNA containing a single W1W2 domain as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) A cDNA in the positive yeast colony was found to encode a cellular protein, human oestrogen-related receptor 1 (hERR1), which is a constitutive transcriptional activator of the various types of oestrogen response elements. (ii) A purified chimeric protein consisting of glutathione -transferase (GST) fused to hERR1 specifically formed complexes with EBNA-LPs containing one (EBNA-LPR1), two (EBNA-LPR2) or four W1W2 repeats (EBNA-LPR4) transiently expressed in COS-7 cells. Reciprocally, GST fused to EBNA-LPR1 or EBNA-LPR2 pulled down hERR1 transiently expressed in COS-7 cells. (iii) Mutational analyses of EBNA-LP revealed that the Y2 domain of EBNA-LP is responsible for the interaction with hERR1 and two leucines in the Y2 domain (Leu-78 and -82), which are conserved among a subset of primate gammaherpesviruses, are interactive sites for hERR1. So far, it has been reported that the only domain of EBNA-LP critical for EBV-induced transformation is the Y1Y2 domain. Potential roles of hERR1 in EBV-induced transformation are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18615-0
2003-02-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/2/vir840319.html?itemId=/content/journal/jgv/10.1099/vir.0.18615-0&mimeType=html&fmt=ahah

References

  1. Alfieri C., Birkenbach M., Kieff E.. 1991; Early events in Epstein–Barr virus infection of human B lymphocytes. Virology181:595–608
    [Google Scholar]
  2. Allan G. J., Inman G. J., Parker B. D., Rowe D. T., Farrell P. J.. 1992; Cell growth effects of Epstein–Barr virus leader protein. J Gen Virol73:1547–1551
    [Google Scholar]
  3. Andersen J. H., Osbakk S. A., Vorland L. H., Traavik T., Gutteberg T. J.. 2001; Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res51:141–149
    [Google Scholar]
  4. Bandobashi K., Maeda A., Teramoto N., Nagy N., Szekely L., Taguchi H., Miyoshi I., Klein G., Klein E.. 2001; Intranuclear localization of the transcription coadaptor CBP/p300 and the transcription factor RBP-Jk in relation to EBNA-2 and -5 in B lymphocytes. Virology288:275–282
    [Google Scholar]
  5. Bonnelye E., Vanacker J. M., Dittmar T., Begue A., Desbiens X., Denhardt D. T., Aubin J. E., Laudet V., Fournier B.. 1997a; The ERR-1 orphan receptor is a transcriptional activator expressed during bone development. Mol Endocrinol11:905–916
    [Google Scholar]
  6. Bonnelye E., Vanacker J. M., Spruyt N., Alric S., Fournier B., Desbiens X., Laudet V.. 1997b; Expression of the estrogen-related receptor 1 (ERR-1) orphan receptor during mouse development. Mech Dev65:71–85
    [Google Scholar]
  7. Chen S., Zhou D., Okubo T., Kao Y. C., Yang C.. 1999; Breast tumor aromatase: functional role and transcriptional regulation. Endocr Relat Cancer6:149–156
    [Google Scholar]
  8. Giguere V., Yang N., Segui P., Evans R. M.. 1998; Identification of a new class of steroid hormone receptors. Nature331:91–94
    [Google Scholar]
  9. Hammerschmidt W., Sugden B.. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature340:393–397
    [Google Scholar]
  10. Han I., Harada S., Weaver D., Xue Y., Lane W., Orstavik S., Skalhegg B., Kieff E.. 2001; EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol75:2475–2481
    [Google Scholar]
  11. Harada S., Kieff E.. 1997; Epstein–Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol71:6611–6618
    [Google Scholar]
  12. Hutchens T. W., Lonnerdal B.. 1997; Lactoferrin: Interaction and Biological Functions pp 3–23 Totowa, NJ: Humana Press;
    [Google Scholar]
  13. Jiang W. Q., Szekely L., Wendel-Hansen V., Ringertz N., Klein G., Rosen A.. 1991; Co-localization of the retinoblastoma protein and the Epstein–Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res197:314–318
    [Google Scholar]
  14. Kawaguchi Y., Tomonaga K., Maeda K., Ono M., Miyazawa T., Kohmoto M., Tohya Y., Mikami T.. 1995; The C/EBP site in the feline immunodeficiency virus (FIV) long terminal repeat (LTR) is necessary for its efficient replication and is also involved in the inhibition of FIV LTR-directed gene expression by pseudorabies virus ICP4. Virology208:492–499
    [Google Scholar]
  15. Kawaguchi Y., Bruni R., Roizman B.. 1997a; Interaction of herpes simplex virus 1 α regulatory protein ICP0 with elongation factor 1δ: ICP0 affects translational machinery. J Virol71:1019–1024
    [Google Scholar]
  16. Kawaguchi Y., Bruni R., Roizman B.. 1997b; Herpes simplex virus 1 α regulatory protein ICP0 interacts with and stabilizes the cell cycle regulator cyclin D3. J Virol71:7328–7336
    [Google Scholar]
  17. Kawaguchi Y., Nakajima K., Igarashi M.. 8 other authors 2000; Interaction of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol74:10104–10111
    [Google Scholar]
  18. Kieff E.. 1996; Epstein–Barr Virus and its replication. In Fields Virology, 3rd edn. pp 2343–2396 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  19. Kieff E., Rickinson A. B.. 2001; Epstein–Barr virus and its replication. In Fields Virology, 4th edn. pp 2511–2574 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  20. Kitay M. K., Rowe D. T.. 1996; Protein–protein interactions between Epstein–Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology220:91–99
    [Google Scholar]
  21. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E.. 1991; The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol65:6826–6837
    [Google Scholar]
  22. Mannick J. B., Tong X., Hemnes A., Kieff E.. 1995; The Epstein–Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J Virol69:8169–8172
    [Google Scholar]
  23. McCann E. M., Kelly G. L., Rickinson A. B., Bell A. I.. 2001; Genetic analysis of the Epstein–Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol82:3067–3079
    [Google Scholar]
  24. Mori Y., Dhepakson P., Shimamto T., Ueda K., Gomi Y., Tani H., Matsuura Y., Yamanishi K.. 2000; Expression of human herpesvirus 6B rep within infected cells and binding of its gene product to the TATA-binding protein in vitro and in vivo. J Virol74:6096–6104
    [Google Scholar]
  25. Nitsche F., Bell A., Rickinson A.. 1997; Epstein–Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol71:6619–6628
    [Google Scholar]
  26. Peng R., Gordadze A. V., Fuentes Panana E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D.. 2000a; Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol74:379–389
    [Google Scholar]
  27. Peng R., Tan J., Ling P. D.. 2000b; Conserved regions in the Epstein–Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol74:9953–9963
    [Google Scholar]
  28. Rickinson A. B., Kieff E.. 1996; Epstein–Barr virus. In Fields Virology, 3rd edn. pp 2397–2446 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  29. Rickinson A. B., Kieff E.. 2001; Epstein–Barr virus. In Fields Virology, 4th edn. pp 2575–2627 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  30. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E.. 1986; Nucleotide sequences of mRNAs encoding Epstein–Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci U S A83:5096–5100
    [Google Scholar]
  31. Sladek R., Bader J. A., Giguere V.. 1997; The orphan nuclear receptor estrogen-related receptor α is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol17:5400–5409
    [Google Scholar]
  32. Szekely L., Selivanova G., Magnusson K. P., Klein G., Wiman K. G.. 1993; EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A90:5455–5459
    [Google Scholar]
  33. Szekely L., Jiang W. Q., Pokrovskaja K., Wiman K. G., Klein G., Ringertz N.. 1995; Reversible nucleolar translocation of Epstein–Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion. J Gen Virol76:2423–2432
    [Google Scholar]
  34. Szekely L., Pokrovskaja K., Jiang W. Q., de The H., Ringertz N., Klein G.. 1996; The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol70:2562–2568
    [Google Scholar]
  35. Tanaka M., Yokoyama A., Igarashi M., Matsuda G., Kato K., Kanamori M., Hirai K., Kawaguchi Y., Yamanashi Y.. 2001; Conserved region CR2 of Epstein–Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol76:1025–1032
    [Google Scholar]
  36. Vanacker J. M., Bonnelye E., Delmarre C., Laudet V.. 1998a; Activation of the thyroid hormone receptor alpha gene promoter by the orphan nuclear receptor ERR α. Oncogene17:2429–2435
    [Google Scholar]
  37. Vanacker J. M., Delmarre C., Guo X., Laudet V.. 1998b; Activation of the osteopontin promoter by the orphan nuclear receptor estrogen receptor related α. Cell Growth & Differ9:1007–1014
    [Google Scholar]
  38. Vottero A., Kirschner L. S., Yue W., Brodie A., Stratakis C. A.. 1998; P450arom gene expression in peripheral blood lymphocytes: identification of a cryptic splice site for exon-1 after Epstein–Barr virus transformation. J Steroid Biochem Mol Biol64:245–250
    [Google Scholar]
  39. Wiley S. R., Kraus R. J., Zuo F., Murray E. E., Loritz K., Mertz J. E.. 1993; SV40 early-to-late switch involves titration of cellular transcriptional repressors. Genes & Dev7:2206–2219
    [Google Scholar]
  40. Woisetschlaeger M., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H.. 1990; Promoter switching in Epstein–Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci U S A87:1725–1729
    [Google Scholar]
  41. Woisetschlaeger M., Jin X. W., Yandava C. N., Furmanski L. A., Strominger J. L., Speck S. H.. 1991; Role for the Epstein–Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc Natl Acad Sci U S A88:3942–3946
    [Google Scholar]
  42. Yang N., Shigeta H., Shi H., Teng C. T.. 1996; Estrogen-related receptor, hERR1, modulates estrogen receptor-mediated response of human lactoferrin gene promoter. J Biol Chem271:5795–5804
    [Google Scholar]
  43. Yang C., Zhou D., Chen S.. 1998; Modulation of aromatase expression in the breast tissue by ERR1-α orphan receptor. Cancer Res58:5695–5700
    [Google Scholar]
  44. Yokoyama A., Kawaguchi Y., Kitabayashi I., Ohki M., Hirai K.. 2001a; The conserved domain CR2 of Epstein–Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology279:401–413
    [Google Scholar]
  45. Yokoyama A., Tanaka M., Matsuda G., Kato K., Kanamori M., Kawasaki H., Hirano H., Kitabayashi I., Ohki M., Hirai K., Kawaguchi Y.. 2001b; Identification of major phosphorylation sites of Epstein–Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol75:5119–5128
    [Google Scholar]
  46. Yoo Y. C., Watanabe S., Watanabe R., Hata K., Shimazaki K., Azuma I.. 1998; Bovine lactoferrin and lactoferricin inhibit tumor metastasis in mice. Adv Exp Med Biol443:285–291
    [Google Scholar]
  47. Zhang Z., Teng C. T.. 2000; Estrogen receptor-related receptor α1 interacts with coactivator and constitutively activates the estrogen response elements of the human lactoferrin gene. J Biol Chem275:20837–20846
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18615-0
Loading
/content/journal/jgv/10.1099/vir.0.18615-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error