1887

Abstract

Inactivated influenza A virus and fixed, virus-infected cells induce type 1 interferon (IFN-α/β) production in murine splenocytes. In this study, we have explored the nature of the virus–spleen cell interaction that leads to IFN-α/β induction and the reason for the poor response to some virus strains. IFN-α/β induction by horse serum-sensitive, but not -resistant, strains of influenza virus was inhibited in the presence of horse serum, indicating that binding of the virus to sialylated cell receptors is a necessary step in the induction process. Furthermore, influenza viruses A/PR/8/34 (H1N1) and A/WS/33 (H1N1), which were poor inducers of IFN-α/β in spleen cells, were shown to have a more active neuraminidase than strains that induced higher IFN levels, and IFN-α/β induction by A/PR/8/34 (H1N1) and A/WS/33 (H1N1) was restored in the presence of a neuraminidase inhibitor. Growth of virus in different cell types altered the level of IFN-α/β induced in spleen cells by particular virus strains, suggesting that the nature of the carbohydrate moieties on the viral glycoproteins may also influence IFN-α/β induction in this system. Consistent with this notion, treatment of egg-grown virus with periodate to oxidize viral carbohydrate greatly reduced its capacity for IFN-α/β induction. Furthermore, induction of IFN-α/β was inhibited in the presence of the saccharides yeast mannan and laminarin. Together these findings indicate: (i) a requirement for interaction of the virus with sialylated receptors on the IFN-producing cell; (ii) an influence of viral carbohydrate on the response; and (iii) possible involvement of a lectin-like receptor on the IFN-producing cell in the induction of IFN-α/β or in regulation of this response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18590-0
2003-01-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/1/vir840193.html?itemId=/content/journal/jgv/10.1099/vir.0.18590-0&mimeType=html&fmt=ahah

References

  1. Anders, E. M., Scalzo, A. A., Rogers, G. N. & White, D. O. ( 1986; ). Relationship between mitogenic activity of influenza viruses and the receptor-binding specificity of their hemagglutinin molecules. J Virol 60, 476–482.
    [Google Scholar]
  2. Anders, E. M., Hartley, C. A. & Jackson, D. C. ( 1990; ). Bovine and mouse serum β inhibitors of influenza A viruses are mannose-binding lectins. Proc Natl Acad Sci U S A 87, 4485–4489.[CrossRef]
    [Google Scholar]
  3. Anders, E. M., Hartley, C. A., Reading, P. C. & Ezekowitz, R. A. ( 1994; ). Complement-dependent neutralization of influenza virus by a serum mannose-binding lectin. J Gen Virol 75, 615–622.[CrossRef]
    [Google Scholar]
  4. Asselin-Paturel, C., Boonstra, A., Dalod, M. & 8 other authors ( 2001; ). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunol 2, 1144–1150.[CrossRef]
    [Google Scholar]
  5. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. ( 1999; ). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17, 189–220.[CrossRef]
    [Google Scholar]
  6. Bjorck, P. ( 2001; ). Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte–macrophage colony-stimulating factor-treated mice. Blood 98, 3520–3526.[CrossRef]
    [Google Scholar]
  7. Bogdan, C. ( 2000; ). The function of type I interferons in antimicrobial immunity. Curr Opin Immunol 12, 419–424.[CrossRef]
    [Google Scholar]
  8. Caton, A. J., Brownlee, G. G., Yewdell, J. W. & Gerhard, W. ( 1982; ). The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417–427.[CrossRef]
    [Google Scholar]
  9. Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A. & Colonna, M. ( 1999; ). Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med 5, 919–923.[CrossRef]
    [Google Scholar]
  10. Charley, B. & Laude, H. ( 1988; ). Induction of α interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J Virol 62, 8–11.
    [Google Scholar]
  11. Charley, B., Lavenant, L. & Delmas, B. ( 1991; ). Glycosylation is required for coronavirus TGEV to induce an efficient production of IFNα by blood mononuclear cells. Scand J Immunol 33, 435–440.[CrossRef]
    [Google Scholar]
  12. Crecelius, D. M., Deom, C. M. & Schulze, I. T. ( 1984; ). Biological properties of a hemagglutinin mutant of influenza virus selected by host cells. Virology 139, 164–177.[CrossRef]
    [Google Scholar]
  13. De Clercq, E. ( 1981; ). Interferon induction by polynucleotides, modified polynucleotides, and polycarboxylates. Methods Enzymol 78, 227–236.
    [Google Scholar]
  14. Deom, C. M. & Schulze, I. T. ( 1985; ). Oligosaccharide composition of an influenza virus hemagglutinin with host-determined binding properties. J Biol Chem 260, 14771–14774.
    [Google Scholar]
  15. Dzionek, A., Sohma, Y. Nagafune, J. & 14 other authors ( 2001; ). BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J Exp Med 194, 1823–1834.[CrossRef]
    [Google Scholar]
  16. Feldman, S. B., Ferraro, M., Zheng, H. M., Patel, N., Gould-Fogerite, S. & Fitzgerald-Bocarsly, P. ( 1994; ). Viral induction of low frequency interferon-α producing cells. Virology 204, 1–7.[CrossRef]
    [Google Scholar]
  17. Figdor, C. G., van Kooyk, Y. & Adema, G. J. ( 2002; ). C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev Immunol 2, 77–84.[CrossRef]
    [Google Scholar]
  18. Fitzgerald-Bocarsly, P. ( 1993; ). Human natural interferon-α producing cells. Pharmacol & Ther 60, 39–62.[CrossRef]
    [Google Scholar]
  19. Gallucci, S., Lolkema, M. & Matzinger, P. ( 1999; ). Natural adjuvants: endogenous activators of dendritic cells. Nature Med 5, 1249–1255.[CrossRef]
    [Google Scholar]
  20. Gambaryan, A. S., Marinina, V. P., Tuzikov, A. B., Bovin, N. V., Rudneva, I. A., Sinitsyn, B. V., Shilov, A. A. & Matrosovich, M. N. ( 1998; ). Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 247, 170–177.[CrossRef]
    [Google Scholar]
  21. Geijtenbeek, T. B., Kwon, D. S., Torensma, R. & 9 other authors ( 2000; ). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597.[CrossRef]
    [Google Scholar]
  22. Hemmi, H., Takeuchi, O., Kawai, T. & 8 other authors ( 2000; ). A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.[CrossRef]
    [Google Scholar]
  23. Hemmi, H., Kaisho, T., Takeuchi, O. & 7 other authors ( 2002; ). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature Immunol 3, 196–200.[CrossRef]
    [Google Scholar]
  24. Isaacs, A. & Lindenmann, J. ( 1957; ). Virus interference. I. The interferon. Proc R Soc Lond Ser B Biol Sci 147, 258–268.[CrossRef]
    [Google Scholar]
  25. Ito, Y. ( 1994; ). Induction of interferon by virus glycoprotein(s) in lymphoid cells through interaction with the cellular receptors via lectin-like action: an alternative interferon induction mechanism. Arch Virol 138, 187–198.[CrossRef]
    [Google Scholar]
  26. Ito, Y., Nishiyama, Y., Shimokata, K., Nagata, I., Takeyama, H. & Kunii, A. ( 1978; ). The mechanism of interferon induction in mouse spleen cells stimulated with HVJ. Virology 88, 128–137.[CrossRef]
    [Google Scholar]
  27. Ito, T., Amakawa, R., Kaisho, T. & 7 other authors ( 2002; ). Interferon-α and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195, 1507–1512.[CrossRef]
    [Google Scholar]
  28. Jacobs, B. L. & Langland, J. O. ( 1996; ). When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339–349.[CrossRef]
    [Google Scholar]
  29. Kadowaki, N., Ho, S., Antonenko, S., Maleyft, R. W., Kastelein, R. A., Bazan, F. & Liu, Y. J. ( 2001; ). Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 194, 863–869.[CrossRef]
    [Google Scholar]
  30. Kaverin, N. V. & Webster, R. G. ( 1995; ). Impairment of multicycle influenza virus growth in Vero (WHO) cells by loss of trypsin activity. J Virol 69, 2700–2703.
    [Google Scholar]
  31. Krug, A., Rothenfusser, S., Hornung, V., Jahrsdorfer, B., Blackwell, S., Ballas, Z. K., Endres, S., Krieg, A. M. & Hartmann, G. ( 2001; ). Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur J Immunol 31, 2154–2163.[CrossRef]
    [Google Scholar]
  32. Laude, H., Gelfi, J., Lavenant, L. & Charley, B. ( 1992; ). Single amino acid changes in the viral glycoprotein M affect induction of α interferon by the coronavirus transmissible gastroenteritis virus. J Virol 66, 743–749.
    [Google Scholar]
  33. Le Bon, A., Schiavoni, G., D'Agostino, G., Gresser, I., Belardelli, F. & Tough, D. F. ( 2001; ). Type 1 interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470.[CrossRef]
    [Google Scholar]
  34. Luft, T., Pang, K. C., Thomas, E., Hertzog, P., Hart, D. N., Trapani, J. & Cebon, J. ( 1998; ). Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 161, 1947–1953.
    [Google Scholar]
  35. Markwell, M. A., Portner, A. & Schwartz, A. L. ( 1985; ). An alternative route of infection for viruses: entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc Natl Acad Sci U S A 82, 978–982.[CrossRef]
    [Google Scholar]
  36. Medzhitov, R., & Janeway, C., Jr ( 2000; ). Innate immune recognition: mechanisms and pathways. Immunol Rev 173, 89–97.[CrossRef]
    [Google Scholar]
  37. Mosmann, T. ( 1983; ). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63.[CrossRef]
    [Google Scholar]
  38. Muller, U., Steinhoff, U., Reis, L. F., Hemmi, S., Pavlovic, J., Zinkernagel, R. M. & Aguet, M. ( 1994; ). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921.[CrossRef]
    [Google Scholar]
  39. Nakamura, K. & Compans, R. W. ( 1979; ). Host cell- and virus strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses. Virology 95, 8–23.[CrossRef]
    [Google Scholar]
  40. Nakano, H., Yanagita, M. & Gunn, M. D. ( 2001; ). CD11c+ B220+ Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 194, 1171–1178.[CrossRef]
    [Google Scholar]
  41. Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M. & Puzo, G. ( 2001; ). Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166, 7477–7485.[CrossRef]
    [Google Scholar]
  42. O'Keeffe, M., Hochrein, H., Vremec, D. & 10 other authors ( 2002; ). Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med 196, 1307–1319.[CrossRef]
    [Google Scholar]
  43. Raymond, F. L., Caton, A. J., Cox, N. J., Kendal, A. P. & Brownlee, G. G. ( 1983; ). Antigenicity and evolution amongst recent influenza viruses of H1N1 subtype. Nucleic Acids Res 11, 7191–7203.[CrossRef]
    [Google Scholar]
  44. Reading, P. C., Morey, L. S., Crouch, E. C. & Anders, E. M. ( 1997; ). Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol 71, 8204–8212.
    [Google Scholar]
  45. Reading, P. C., Miller, J. L. & Anders, E. M. ( 2000; ). Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 74, 5190–5197.[CrossRef]
    [Google Scholar]
  46. Rogers, G. N., Pritchett, T. J., Lane, J. L. & Paulson, J. C. ( 1983; ). Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131, 394–408.[CrossRef]
    [Google Scholar]
  47. Rudd, P. M., Wormald, M. R., Harvey, D. J., Devasahayam, M., McAlister, M. S., Brown, M. H., Davis, S. J., Barclay, A. N. & Dwek, R. A. ( 1999; ). Oligosaccharide analysis and molecular modeling of soluble forms of glycoproteins belonging to the Ly-6, scavenger receptor, and immunoglobulin superfamilies expressed in Chinese hamster ovary cells. Glycobiology 9, 443–458.[CrossRef]
    [Google Scholar]
  48. Sawyer, W. ( 1969; ). Interaction of influenza virus with leukocytes and its effect on phagocytosis. J Infect Dis 119, 541–556.[CrossRef]
    [Google Scholar]
  49. Sedmak, J. J. & Grossberg, S. E. ( 1973; ). Comparative enzyme kinetics of influenza neuraminidases with the synthetic substrate methoxyphenylneuraminic acid. Virology 56, 658–661.[CrossRef]
    [Google Scholar]
  50. Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S. & Liu, Y. J. ( 1999; ). The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837.[CrossRef]
    [Google Scholar]
  51. Stray, S. J., Cummings, R. D. & Air, G. M. ( 2000; ). Influenza virus infection of desialylated cells. Glycobiology 10, 649–658.[CrossRef]
    [Google Scholar]
  52. Takeda, K. & Akira, S. ( 2001; ). Roles of Toll-like receptors in innate immune responses. Genes Cells 6, 733–742.[CrossRef]
    [Google Scholar]
  53. Ward, A. C. & de Koning-Ward, T. F. ( 1995; ). Changes in the hemagglutinin gene of the neurovirulent influenza virus strain A/NWS/33. Virus Genes 10, 179–183.[CrossRef]
    [Google Scholar]
  54. Weis, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J. & Wiley, D. C. ( 1988; ). Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333, 426–431.[CrossRef]
    [Google Scholar]
  55. Wilson, I. A., Skehel, J. J. & Wiley, D. C. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Å resolution. Nature 289, 366–373.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18590-0
Loading
/content/journal/jgv/10.1099/vir.0.18590-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error