1887

Abstract

Rotavirus mRNAs are transcribed from 11 genomic dsRNA segments within a subviral particle. The mRNAs are extruded into the cytoplasm where they serve as mRNA for protein synthesis and as templates for packaging and replication into dsRNA. The molecular steps in the replication pathway that regulate the levels of viral gene expression are not well defined. We have investigated potential mechanisms of regulation of rotavirus gene expression by functional evaluation of two differentially expressed viral mRNAs. NSP1 (gene 5) and VP6 (gene 6) are expressed early in infection, and VP6 is expressed in excess over NSP1. We formulated the hypothesis that the amounts of NSP1 and VP6 were regulated by the translational efficiencies of the respective mRNAs. We measured the levels of gene 5 and gene 6 mRNA and showed that they were not significantly different, and protein analysis indicated no difference in stability of NSP1 compared with VP6. Polyribosome analysis showed that the majority of gene 6 mRNA was present on large polysomes. In contrast, sedimentation of more than half of the gene 5 mRNA was subpolysomal. The change in distribution of gene 5 mRNA in polyribosome gradients in response to treatment with low concentrations of cycloheximide suggested that gene 5 is a poor translation initiation template compared with gene 6 mRNA. These data define a regulatory mechanism for the difference in amounts of VP6 and NSP1 and provide evidence for post-transcriptional control of rotavirus gene expression mediated by the translational efficiency of individual viral mRNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18558-0
2003-02-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/2/vir840383.html?itemId=/content/journal/jgv/10.1099/vir.0.18558-0&mimeType=html&fmt=ahah

References

  1. Allen A. M., Desselberger U.. 1985; Reassortment of human rotaviruses carrying rearranged genomes with bovine rotavirus. J Gen Virol66:2703–2714
    [Google Scholar]
  2. Bass D. M., Baylor M. R., Chen C., Mackow E. M., Bremont M., Greenberg H. B.. 1992; Liposome-mediated transfection of intact viral particles reveals that plasma membrane penetration determines permissivity of tissue culture cells to rotavirus. J Clin Invest90:2313–2320
    [Google Scholar]
  3. Biryahwaho B., Hundley F., Desselberger U.. 1987; Bovine rotavirus with rearranged genome reassorts with human rotavirus. Brief report. Arch Virol96:257–264
    [Google Scholar]
  4. Bremont M., Charpilienne A., Chabanne D., Cohen J.. 1987; Nucleotide sequence and expression in Escherichia coli of the gene encoding the nonstructural protein NCVP2 of bovine rotavirus. Virology161:138–144
    [Google Scholar]
  5. Brendler T., Godefroy-Colburn T., Carlill R. D., Thach R. E.. 1981a; The role of mRNA competition in regulating translation. II. Development of a quantitative in vitro assay. J Biol Chem256:11747–11754
    [Google Scholar]
  6. Brendler T., Godefroy-Colburn T., Yu S., Thach R. E.. 1981b; The role of mRNA competition in regulating translation. III. Comparison of in vitro and in vivo results.. J Biol Chem256:11755–11761
    [Google Scholar]
  7. Chizhikov V., Patton J. T.. 2000; A four-nucleotide translation enhancer in the 3′-terminal consensus sequence of the nonpolyadenylated mRNAs of rotavirus. RNA 6:814–825
    [Google Scholar]
  8. Detjen B. M., Walden W. E., Thach R. E.. 1982; Translational specificity in reovirus-infected mouse fibroblasts. J Biol Chem257:9855–9860
    [Google Scholar]
  9. Ericson B. L., Graham D. Y., Mason B. B., Estes M. K.. 1982; Identification, synthesis, and modifications of simian rotavirus SA11 polypeptides in infected cells. J Virol42:825–839
    [Google Scholar]
  10. Estes M. K., Cohen J.. 1989; Rotavirus gene structure and function. Microbiol Rev53:410–449
    [Google Scholar]
  11. Estes M. K., Mason B. B., Crawford S., Cohen J.. 1984; Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein. Nucleic Acids Res12:1875–1887
    [Google Scholar]
  12. Gallie D. R.. 1996; Translational control of cellular and viral mRNAs. Plant Mol Biol32:145–158
    [Google Scholar]
  13. Gallie D. R., Kobayashi M.. 1994; The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene142:159–165
    [Google Scholar]
  14. Geballe A. P., Sachs M. S.. 2000; Translational control by upstream open reading frames. In Translational Control of Gene Expression pp 595–614 Edited by Sonenberg N., Hershey J. W., Mathews M. B.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Godefroy-Colburn T., Thach R. E.. 1981; The role of mRNA competition in regulating translation. IV. Kinetic model. J Biol Chem256:11762–11773
    [Google Scholar]
  16. Golini F., Thach S. S., Birge C. H., Safer B., Merrick W. C., Thach R. E.. 1976; Competition between cellular and viral mRNAs in vitro is regulated by a messenger discriminatory initiation factor. Proc Natl Acad Sci U S A73:3040–3044
    [Google Scholar]
  17. Hann L. E., Webb A. C., Cai J. M., Gehrke L.. 1997; Identification of a competitive translation determinant in the 3′ untranslated region of alfalfa mosaic virus coat protein mRNA. Mol Cell Biol17:2005–2013
    [Google Scholar]
  18. Hardy M. E., Woode G. N., Xu Z. C., Gorziglia M.. 1991; Comparative amino acid sequence analysis of VP4 for VP7 serotype 6 bovine rotavirus strains NCDV, B641, and UK. J Virol65:5535–5538
    [Google Scholar]
  19. Hardy M. E., Gorziglia M., Woode G. N.. 1992; Amino acid sequence analysis of bovine rotavirus B223 reveals a unique outer capsid protein VP4 and confirms a third bovine VP4 type. Virology191:291–300
    [Google Scholar]
  20. Hua J., Patton J. T.. 1994; The carboxyl-half of the rotavirus nonstructural protein NS53 (NSP1) is not required for virus replication. Virology198:567–576
    [Google Scholar]
  21. Hua J., Mansell E. A., Patton J. T.. 1993; Comparative analysis of the rotavirus NS53 gene: conservation of basic and cysteine-rich regions in the protein and possible stem–loop structures in the RNA. Virology196:372–378
    [Google Scholar]
  22. Hundley F., Biryahwaho B., Gow M., Desselberger U.. 1985; Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology143:88–103
    [Google Scholar]
  23. Hundley F., McIntyre M., Clark B., Beards G., Wood D., Chrystie I., Desselberger U.. 1987; Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected immunodeficient child. J Virol61:3365–3372
    [Google Scholar]
  24. Imai M., Akatani K., Ikegami N., Furuichi Y.. 1983; Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. J Virol47:125–136
    [Google Scholar]
  25. Johnson M. A., McCrae M. A.. 1989; Molecular biology of rotaviruses. VIII. Quantitative analysis of regulation of gene expression during virus replication. J Virol63:2048–2055
    [Google Scholar]
  26. Kaspar R. L., Kakegawa T., Cranston H., Morris D. R., White M. W.. 1992; A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J Biol Chem267:508–514
    [Google Scholar]
  27. Kojima K., Taniguchi K., Kobayashi N.. 1996; Species-specific and interspecies relatedness of NSP1 sequences in human, porcine, bovine, feline, and equine rotavirus strains. Arch Virol141:1–12
    [Google Scholar]
  28. Kojima K., Taniguchi K., Kawagishi-Kobayashi M., Matsuno S., Urasawa S.. 2000; Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. Virus Res67:163–171
    [Google Scholar]
  29. Kozak M.. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res12:857–872
    [Google Scholar]
  30. Kozak M.. 1987; An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res15:8125–8148
    [Google Scholar]
  31. Kozak M.. 1988; Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol8:2737–2744
    [Google Scholar]
  32. Lawson T. G., Cladaras M. H., Ray B. K., Lee K. A., Abramson R. D., Merrick W. C., Thach R. E.. 1988; Discriminatory interaction of purified eukaryotic initiation factors 4F plus 4A with the 5′ ends of reovirus messenger RNAs. J Biol Chem263:7266–7276
    [Google Scholar]
  33. Lawton J. A., Estes M. K., Prasad B. V.. 1997; Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles [letter]. Nature Struct Biol4:118–121
    [Google Scholar]
  34. Leathers V., Tanguay R., Kobayashi M., Gallie D. R.. 1993; A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol Cell Biol13:5331–5347
    [Google Scholar]
  35. Lodish H. F.. 1971; Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem246:7131–7138
    [Google Scholar]
  36. Mattion N. M., Mitchell D. B., Both G. W., Estes M. K.. 1991; Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology181:295–304
    [Google Scholar]
  37. McCrae M. A., McCorquodale J. G.. 1983; Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology126:204–212
    [Google Scholar]
  38. Patton J. T.. 1995; Structure and function of the rotavirus RNA-binding proteins. J Gen Virol76:2633–2644
    [Google Scholar]
  39. Patton J. T., Taraporewala Z., Chen D.. 8 other authors 2001; Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. J Virol75:2076–2086
    [Google Scholar]
  40. Pedley S., Hundley F., Chrystie I., McCrae M. A., Desselberger U.. 1984; The genomes of rotaviruses isolated from chronically infected immunodeficient children. J Gen Virol65:1141–1150
    [Google Scholar]
  41. Piron M., Vende P., Cohen J., Poncet D.. 1998; Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J17:5811–5821
    [Google Scholar]
  42. Poncet D., Aponte C., Cohen J.. 1993; Rotavirus protein NSP3 (NS34) is bound to the 3′ end consensus sequence of viral mRNAs in infected cells. J Virol67:3159–3165
    [Google Scholar]
  43. Poncet D., Laurent S., Cohen J.. 1994; Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J13:4165–4173
    [Google Scholar]
  44. Prasad B. V., Chiu W.. 1994; Structure of rotavirus. Curr Top Microbiol Immunol185:9–29
    [Google Scholar]
  45. Ray A., Walden W. E., Brendler T., Zenger V. E., Thach R. E.. 1985; Effect of medium hypertonicity on reovirus translation rates. An application of kinetic modeling in vivo. Biochemistry24:7525–7532
    [Google Scholar]
  46. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Tanguay R. L., Gallie D. R.. 1996; Translational efficiency is regulated by the length of the 3′ untranslated region. Mol Cell Biol16:146–156
    [Google Scholar]
  48. Taniguchi K., Kojima K., Urasawa S.. 1996; Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153–155. J Virol70:4125–4130
    [Google Scholar]
  49. Vende P., Piron M., Castagne N., Poncet D.. 2000; Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J Virol74:7064–7071
    [Google Scholar]
  50. Walden W. E., Thach R. E.. 1986; Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry25:2033–2041
    [Google Scholar]
  51. Walden W. E., Godefroy-Colburn T., Thach R. E.. 1981; The role of mRNA competition in regulating translation. I. Demonstration of competition in vivo.. J Biol Chem256:11739–11746
    [Google Scholar]
  52. White M. W., Kameji T., Pegg A. E., Morris D. R.. 1987; Increased efficiency of translation of ornithine decarboxylase mRNA in mitogen-activated lymphocytes. Eur J Biochem170:87–92
    [Google Scholar]
  53. White M. W., Degnin C., Hill J., Morris D. R.. 1990; Specific regulation by endogenous polyamines of translational initiation of S-adenosylmethionine decarboxylase mRNA in Swiss 3T3 fibroblasts. Biochem J268:657–660
    [Google Scholar]
  54. Woode G. N., Kelso N. E., Simpson T. F., Gaul S. K., Evans L. E., Babiuk L.. 1983; Antigenic relationships among some bovine rotaviruses: serum neutralization and cross-protection in gnotobiotic calves. J Clin Microbiol18:358–364
    [Google Scholar]
  55. Zeyenko V. V., Ryabova L. A., Gallie D. R., Spirin A. S.. 1994; Enhancing effect of the 3′-untranslated region of tobacco mosaic virus RNA on protein synthesis in vitro. FEBS Lett354:271–273
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18558-0
Loading
/content/journal/jgv/10.1099/vir.0.18558-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error