1887

Abstract

Human papillomaviruses (HPVs) have been detected in urban wastewaters, demonstrating that epitheliotropic viruses can find their way into sewage through the washing of skin and mucous membranes. Papillomavirus shedding through faeces is still an unexplored issue. The objective of the present study was to investigate the presence of HPVs in stool samples. We analysed 103 faecal specimens collected from hospitalized patients with diarrhoea using validated primers able to detect α, β and γ HPVs. PCR products underwent sequencing analysis and sequences were aligned to reference genomes from the Papillomavirus Episteme database. A total of 15 sequences were characterized from the faecal samples. Thirteen samples (12.6 %) were positive for nine genotypes belonging to the α and β genera: HPV32 (LR, α1), HPV39 (HR, α7), HPV44 (LR, α10), HPV8 (β1), HPV9, HPV23, HPV37, HPV38 and HPV120 (β2). Two putative novel genotypes of the β genus, species 1 and 2, were also detected. The tissue(s) of origin is unknown, since faeces can collect HPVs originating from or passing through the entire digestive system. To our knowledge, this is the first investigation on the occurrence and diversity of HPVs in faecal samples. Results from this study demonstrate that HPVs can find their way into sewage as a consequence of shedding in the faeces. This highlights the need for further studies aimed at understanding the prevalence of HPV in different water environments and the potential for waterborne transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071787-0
2015-03-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/607.html?itemId=/content/journal/jgv/10.1099/vir.0.071787-0&mimeType=html&fmt=ahah

References

  1. Astori G., Lavergne D., Benton C., Höckmayr B., Egawa K., Garbe C., de Villiers E. M.. ( 1998;). Human papillomaviruses are commonly found in normal skin of immunocompetent hosts. . J Invest Dermatol 110:, 752–755. [CrossRef][PubMed]
    [Google Scholar]
  2. Baandrup L., Thomsen L. T., Olesen T. B., Andersen K. K., Norrild B., Kjaer S. K.. ( 2014;). The prevalence of human papillomavirus in colorectal adenomas and adenocarcinomas: a systematic review and meta-analysis. . Eur J Cancer 50:, 1446–1461. [CrossRef][PubMed]
    [Google Scholar]
  3. Bean S. M., Chhieng D. C.. ( 2010;). Anal-rectal cytology: the other pap test. . Lab Med 41:, 168–171. [CrossRef]
    [Google Scholar]
  4. Berkhout R. J., Tieben L. M., Smits H. L., Bavinck J. N., Vermeer B. J., ter Schegget J.. ( 1995;). Nested PCR approach for detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. . J Clin Microbiol 33:, 690–695.[PubMed]
    [Google Scholar]
  5. Bibby K., Peccia J.. ( 2013;). Identification of viral pathogen diversity in sewage sludge by metagenome analysis. . Environ Sci Technol 47:, 1945–1951. [CrossRef][PubMed]
    [Google Scholar]
  6. Bottalico D., Chen Z., Kocjan B. J., Seme K., Poljak M., Burk R. D.. ( 2012;). Characterization of human papillomavirus type 120: a novel betapapillomavirus with tropism for multiple anatomical niches. . J Gen Virol 93:, 1774–1779. [CrossRef][PubMed]
    [Google Scholar]
  7. Bouvard V., Baan R., Straif K., Grosse Y., Secretan B., El Ghissassi F., Benbrahim-Tallaa L., Guha N., Freeman C.. & other authors ( 2009;). A review of human carcinogens–part B: biological agents. . Lancet Oncol 10:, 321–322. [CrossRef][PubMed]
    [Google Scholar]
  8. Cantalupo P. G., Calgua B., Zhao G., Hundesa A., Wier A. D., Katz J. P., Grabe M., Hendrix R. W., Girones R.. & other authors ( 2011;). Raw sewage harbors diverse viral populations. . MBio 2:, e00180-11. [CrossRef][PubMed]
    [Google Scholar]
  9. Chouhy D., Bolatti E. M., Pérez G. R., Giri A. A.. ( 2013a;). Analysis of the genetic diversity and phylogenetic relationships of putative human papillomavirus types. . J Gen Virol 94:, 2480–2488. [CrossRef][PubMed]
    [Google Scholar]
  10. Chouhy D., Bolatti E. M., Piccirilli G., Sánchez A., Fernandez Bussy R., Giri A. A.. ( 2013b;). Identification of human papillomavirus type 156, the prototype of a new human gammapapillomavirus species, by a generic and highly sensitive PCR strategy for long DNA fragments. . J Gen Virol 94:, 524–533. [CrossRef][PubMed]
    [Google Scholar]
  11. D’Souza G., Dempsey A.. ( 2011;). The role of HPV in head and neck cancer and review of the HPV vaccine. . Prev Med 53: (Suppl 1), S5–S11. [CrossRef][PubMed]
    [Google Scholar]
  12. Damin D. C., Ziegelmann P. K., Damin A. P.. ( 2013;). Human papillomavirus infection and colorectal cancer risk: a meta-analysis. . Colorectal Dis 15:, e420–e428. [CrossRef][PubMed]
    [Google Scholar]
  13. de Koning M., Quint W., Struijk L., Kleter B., Wanningen P., van Doorn L. J., Weissenborn S. J., Feltkamp M., ter Schegget J.. ( 2006;). Evaluation of a novel highly sensitive, broad-spectrum PCR-reverse hybridization assay for detection and identification of beta-papillomavirus DNA. . J Clin Microbiol 44:, 1792–1800. [CrossRef][PubMed]
    [Google Scholar]
  14. de Roda Husman A. M., Walboomers J. M., van den Brule A. J., Meijer C. J., Snijders P. J.. ( 1995;). The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. . J Gen Virol 76:, 1057–1062. [CrossRef][PubMed]
    [Google Scholar]
  15. de Villiers E. M.. ( 2013;). Cross-roads in the classification of papillomaviruses. . Virology 445:, 2–10. [CrossRef][PubMed]
    [Google Scholar]
  16. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H.. ( 2004;). Classification of papillomaviruses. . Virology 324:, 17–27. [CrossRef][PubMed]
    [Google Scholar]
  17. Di Bonito P., Grasso F., Mochi S., Accardi L., Donà M. G., Branca M., Costa S., Mariani L., Agarossi A.. & other authors ( 2006;). Serum antibody response to human papillomavirus (HPV) infections detected by a novel ELISA technique based on denatured recombinant HPV16 L1, L2, E4, E6 and E7 proteins. . Infect Agent Cancer 1:, 6. [CrossRef][PubMed]
    [Google Scholar]
  18. Egberink H., Thiry E., Möstl K., Addie D., Belák S., Boucraut-Baralon C., Frymus T., Gruffydd-Jones T., Hosie M. J.. & other authors ( 2013;). Feline viral papillomatosis: ABCD guidelines on prevention and management. . J Feline Med Surg 15:, 560–562. [CrossRef][PubMed]
    [Google Scholar]
  19. Forslund O., Antonsson A., Nordin P., Stenquist B., Hansson B. G.. ( 1999;). A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. . J Gen Virol 80:, 2437–2443.[PubMed]
    [Google Scholar]
  20. Forslund O., Ly H., Higgins G.. ( 2003;). Improved detection of cutaneous human papillomavirus DNA by single tube nested ‘hanging droplet’ PCR. . J Virol Methods 110:, 129–136. [CrossRef][PubMed]
    [Google Scholar]
  21. Fratini M., Di Bonito P., La Rosa G.. ( 2014;). Oncogenic papillomavirus and polyomavirus in water environments: is there a potential for waterborne transmission?. Food Environ Virol 6:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  22. García-Pérez R., Ibáñez C., Godínez J. M., Aréchiga N., Garin I., Pérez-Suárez G., de Paz O., Juste J., Echevarría J. E., Bravo I. G.. ( 2014;). Novel papillomaviruses in free-ranging Iberian bats: no virus–host co-evolution, no strict host specificity, and hints for recombination. . Genome Biol Evol 6:, 94–104. [CrossRef][PubMed]
    [Google Scholar]
  23. Guimerà N., Lloveras B., Lindeman J., Alemany L., van de Sandt M., Alejo M., Hernandez-Suarez G., Bravo I. G., Molijn A.. & other authors ( 2013;). The occasional role of low-risk human papillomaviruses 6, 11, 42, 44, and 70 in anogenital carcinoma defined by laser capture microdissection/PCR methodology: results from a global study. . Am J Surg Pathol 37:, 1299–1310. [CrossRef][PubMed]
    [Google Scholar]
  24. Herrel N. R., Johnson N. L., Cameron J. E., Leigh J., Hagensee M. E.. ( 2009;). Development and validation of a HPV-32 specific PCR assay. . Virol J 6:, 90. [CrossRef][PubMed]
    [Google Scholar]
  25. Iannacone M. R., Gheit T., Pfister H., Giuliano A. R., Messina J. L., Fenske N. A., Cherpelis B. S., Sondak V. K., Roetzheim R. G.. & other authors ( 2014;). Case–control study of genus-beta human papillomaviruses in plucked eyebrow hairs and cutaneous squamous cell carcinoma. . Int J Cancer 134:, 2231–2244. [CrossRef][PubMed]
    [Google Scholar]
  26. IARC ( 2007;). Human papillomaviruses (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans vol. 90). Lyon:: International Agency for Research on Cancer;. http://monographs.iarc.fr/ENG/Monographs/vol90/index.php.
    [Google Scholar]
  27. La Rosa G., Fratini M., Accardi L., D’Oro G., Della Libera S., Muscillo M., Di Bonito P.. ( 2013;). Mucosal and cutaneous human papillomaviruses detected in raw sewages. . PLoS ONE 8:, e52391. [CrossRef][PubMed]
    [Google Scholar]
  28. Lange C. E., Tobler K., Markau T., Alhaidari Z., Bornand V., Stöckli R., Trüssel M., Ackermann M., Favrot C.. ( 2009;). Sequence and classification of FdPV2, a papillomavirus isolated from feline Bowenoid in situ carcinomas. . Vet Microbiol 137:, 60–65. [CrossRef][PubMed]
    [Google Scholar]
  29. Ma Y., Madupu R., Karaoz U., Nossa C. W., Yang L., Yooseph S., Yachimski P. S., Brodie E. L., Nelson K. E., Pei Z.. ( 2014;). Human papillomavirus community in healthy persons, defined by metagenomics analysis of Human Microbiome Project shotgun sequencing data sets. . J Virol 88:, 4786–4797. [CrossRef][PubMed]
    [Google Scholar]
  30. Manos M. M., Ting Y., Wright D. K., Lewis A. J., Broker T. R.. & Wolinsky S. M.. ( 1989;). Molecular diagnostics of human cancer. Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. . Cancer Cells 7:, 209–214.
    [Google Scholar]
  31. Mascolini, M. (2013). HPV-39 predicts AIN and anal cancer in Spanish group of men with HIV. In 53rd ICAAC Interscience Conference on Antimicrobial Agents and Chemotherapy, September 10–13, 2013, Denver CO. Conference Reports for NATAP. http://www.natap.org/2013/ICAAC/ICAAC_25.htm.
  32. Muscillo M., Fratini M., Graffeo R., Sanguinetti M., Martella V., Green K. Y., Della Libera S., La Rosa G.. ( 2013;). GIV noroviruses in wastewaters and in stool specimens from hospitalized patients. . Food Environ Virol 5:, 194–202. [CrossRef][PubMed]
    [Google Scholar]
  33. Phan T. G., Kapusinszky B., Wang C., Rose R. K., Lipton H. L., Delwart E. L.. ( 2011;). The fecal viral flora of wild rodents. . PLoS Pathog 7:, e1002218. [CrossRef][PubMed]
    [Google Scholar]
  34. Schaper I. D., Marcuzzi G. P., Weissenborn S. J., Kasper H. U., Dries V., Smyth N., Fuchs P., Pfister H.. ( 2005;). Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. . Cancer Res 65:, 1394–1400. [CrossRef][PubMed]
    [Google Scholar]
  35. Schiller J. T., Buck C. B.. ( 2011;). Cutaneous squamous cell carcinoma: a smoking gun but still no suspects. . J Invest Dermatol 131:, 1595–1596. [CrossRef][PubMed]
    [Google Scholar]
  36. Schneider I., Lehmann M. D., Kogosov V., Stockfleth E., Nindl I.. ( 2013;). Eyebrow hairs from actinic keratosis patients harbor the highest number of cutaneous human papillomaviruses. . BMC Infect Dis 13:, 186. [CrossRef][PubMed]
    [Google Scholar]
  37. Schulz E., Gottschling M., Ulrich R. G., Richter D., Stockfleth E., Nindl I.. ( 2012;). Isolation of three novel rat and mouse papillomaviruses and their genomic characterization. . PLoS ONE 7:, e47164. [CrossRef][PubMed]
    [Google Scholar]
  38. Shulman L. M., Hindiyeh M., Muhsen K., Cohen D., Mendelson E., Sofer D.. ( 2012;). Evaluation of four different systems for extraction of RNA from stool suspensions using MS-2 coliphage as an exogenous control for RT-PCR inhibition. . PLoS ONE 7:, e39455. [CrossRef][PubMed]
    [Google Scholar]
  39. Symonds, E. M. (2008). Viruses in raw sewage and their potential to indicate fecal pollution in coastal environments. Thesis.
  40. Varsani A., Kraberger S., Jennings S., Porzig E. L., Julian L., Massaro M., Pollard A., Ballard G., Ainley D. G.. ( 2014;). A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. . J Gen Virol 95:, 1352–1365. [CrossRef][PubMed]
    [Google Scholar]
  41. zur Hausen H.. ( 2009;). The search for infectious causes of human cancers: where and why. . Virology 392:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071787-0
Loading
/content/journal/jgv/10.1099/vir.0.071787-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error