Porcine sapovirus replication is restricted by the type I interferon response in cell culture Open Access

Abstract

(PSaV) of the family , is the only member of the genus with cell culture and reverse genetics systems. When combined with the piglet model, these approaches provide a system to understand the molecular basis of sapovirus pathogenesis. The replication of PSaV in cell culture is, however, restricted, displaying an absolute requirement for bile acids and producing lower levels of infectious virus than other caliciviruses. The effect of bile acids has previously been linked to a reduction in the signal transducer and activator of transcription (STAT1)-mediated signalling pathway. In the current study, we observed that even in the presence of bile acids, PSaV replication in cell culture was restricted by soluble factors produced from infected cells. This effect was at least partially due to secreted IFN because treatment of cells with recombinant porcine IFN-β resulted in significantly reduced viral replication. Moreover, IFN-mediated signalling pathways (IFN, STAT1 and the 2′,5′-oligoadenylate synthetase) were activated during PSaV infection. Characterization of PSaV growth in cell lines deficient in their ability to induce or respond to IFN showed a 100–150-fold increase in infectious virus production, indicating that the primary role of bile acids was not the inactivation of the innate immune response. Furthermore, the use of IFN-deficient cell lines enabled more efficient recovery of PSaV from cDNA constructs. Overall, the highly efficient cell culture and reverse genetics system established here for PSaV highlighted the key role of the innate immune response in the restriction of PSaV infection and should greatly facilitate further molecular studies on sapovirus host–cell interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071365-0
2015-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/1/74.html?itemId=/content/journal/jgv/10.1099/vir.0.071365-0&mimeType=html&fmt=ahah

References

  1. Andrus L., Marukian S., Jones C. T., Catanese M. T., Sheahan T. P., Schoggins J. W., Barry W. T., Dustin L. B., Trehan K. other authors 2011; Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology 54:1901–1912 [View Article][PubMed]
    [Google Scholar]
  2. Apelbaum A., Yarden G., Warszawski S., Harari D., Schreiber G. 2013; Type I interferons induce apoptosis by balancing cFLIP and caspase-8 independent of death ligands. Mol Cell Biol 33:800–814 [View Article][PubMed]
    [Google Scholar]
  3. Bekisz J., Baron S., Balinsky C., Morrow A., Zoon K. C. 2010; Antiproliferative properties of type I and type II interferon. Pharmaceuticals (Basel) 3:994–1015 [View Article][PubMed]
    [Google Scholar]
  4. Blanton L. H., Adams S. M., Beard R. S., Wei G., Bulens S. N., Widdowson M.-A., Glass R. I., Monroe S. S. 2006; Molecular and epidemiologic trends of caliciviruses associated with outbreaks of acute gastroenteritis in the United States, 2000–2004. J Infect Dis 193:413–421 [View Article][PubMed]
    [Google Scholar]
  5. Chang K.-O., George D. W. 2007; Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J Virol 81:9633–9640 [View Article][PubMed]
    [Google Scholar]
  6. Chang K.-O., Kim Y., Green K. Y., Saif L. J. 2002; Cell-culture propagation of porcine enteric calicivirus mediated by intestinal contents is dependent on the cyclic AMP signaling pathway. Virology 304:302–310 [View Article][PubMed]
    [Google Scholar]
  7. Chang K.-O., Sosnovtsev S. V., Belliot G., Kim Y., Saif L. J., Green K. Y. 2004; Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci U S A 101:8733–8738 [View Article][PubMed]
    [Google Scholar]
  8. Chang K. O., Sosnovtsev S. V., Belliot G., Wang Q. H., Saif L. J., Green K. Y. 2005; Reverse genetics system for porcine enteric calicivirus, a prototype sapovirus in the Caliciviridae. J Virol 79:1409–1416 [View Article][PubMed]
    [Google Scholar]
  9. Changotra H., Jia Y., Moore T. N., Liu G., Kahan S. M., Sosnovtsev S. V., Karst S. M. 2009; Type I and type II interferons inhibit the translation of murine norovirus proteins. J Virol 83:5683–5692 [View Article][PubMed]
    [Google Scholar]
  10. Chattopadhyay S., Marques J. T., Yamashita M., Peters K. L., Smith K., Desai A., Williams B. R. G., Sen G. C. 2010; Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29:1762–1773 [View Article][PubMed]
    [Google Scholar]
  11. Chaudhry Y., Skinner M. A., Goodfellow I. G. 2007; Recovery of genetically defined murine norovirus in tissue culture by using a fowlpox virus expressing T7 RNA polymerase. J Gen Virol 88:2091–2100 [View Article][PubMed]
    [Google Scholar]
  12. Chhatwal P., Bankwitz D., Gentzsch J., Frentzen A., Schult P., Lohmann V., Pietschmann T. 2012; Bile acids specifically increase hepatitis C virus RNA-replication. PLoS ONE 7:e36029 [View Article][PubMed]
    [Google Scholar]
  13. Childs K., Stock N., Ross C., Andrejeva J., Hilton L., Skinner M., Randall R., Goodbourn S. 2007; mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359:190–200 [View Article][PubMed]
    [Google Scholar]
  14. Duizer E., Schwab K. J., Neill F. H., Atmar R. L., Koopmans M. P., Estes M. K. 2004; Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87 [View Article][PubMed]
    [Google Scholar]
  15. Glass R. I. 2013; Beyond discovering the viral agents of acute gastroenteritis. Emerg Infect Dis 19:1190–1191 [View Article][PubMed]
    [Google Scholar]
  16. Grinde B. 2013; Herpesviruses: latency and reactivation – viral strategies and host response. J Oral Microbiol 5:1–9 [View Article][PubMed]
    [Google Scholar]
  17. Hayman A., Comely S., Lackenby A., Hartgroves L. C. S., Goodbourn S., McCauley J. W., Barclay W. S. 2007; NS1 proteins of avian influenza A viruses can act as antagonists of the human alpha/beta interferon response. J Virol 81:2318–2327 [View Article][PubMed]
    [Google Scholar]
  18. Hilton L., Moganeradj K., Zhang G., Chen Y.-H., Randall R. E., McCauley J. W., Goodbourn S. 2006; The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80:11723–11732 [View Article][PubMed]
    [Google Scholar]
  19. Jeong C., Park S.-I., Park S.-H., Kim H.-H., Park S.-J., Jeong J.-H., Choy H. E., Saif L. J., Kim S.-K. other authors 2007; Genetic diversity of porcine sapoviruses. Vet Microbiol 122:246–257 [View Article][PubMed]
    [Google Scholar]
  20. Karst S. M. 2011; The role of type I interferon in regulating norovirus infections. J Clin Cell Immunol S1:001
    [Google Scholar]
  21. Killip M. J., Young D. F., Ross C. S., Chen S., Goodbourn S., Randall R. E. 2011; Failure to activate the IFN-β promoter by a paramyxovirus lacking an interferon antagonist. Virology 415:39–46 [View Article][PubMed]
    [Google Scholar]
  22. Martella V., Lorusso E., Banyai K., Decaro N., Corrente M., Elia G., Cavalli A., Radogna A., Costantini V. other authors 2008; Identification of a porcine calicivirus related genetically to human sapoviruses. J Clin Microbiol 46:1907–1913 [View Article][PubMed]
    [Google Scholar]
  23. McFadden N., Bailey D., Carrara G., Benson A., Chaudhry Y., Shortland A., Heeney J., Yarovinsky F., Simmonds P. other authors 2011; Norovirus regulation of the innate immune response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS Pathog 7:e1002413 [View Article][PubMed]
    [Google Scholar]
  24. Nakamura K., Saga Y., Iwai M., Obara M., Horimoto E., Hasegawa S., Kurata T., Okumura H., Nagoshi M., Takizawa T. 2010; Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during Fiscal Year 2008. J Clin Microbiol 48:1215–1222 [View Article][PubMed]
    [Google Scholar]
  25. Nguyen H. T., Shukla P., Torian U., Faulk K., Emerson S. U. 2014; Hepatitis E virus genotype 1 infection of swine kidney cells in vitro is inhibited at multiple levels. J Virol 88:868–877 [View Article][PubMed]
    [Google Scholar]
  26. Oldstone M. B. 2007; A suspenseful game of ‘hide and seek’ between virus and host. Nat Immunol 8:325–327 [View Article][PubMed]
    [Google Scholar]
  27. Pérez-Cidoncha M., Killip M. J., Oliveros J. C., Asensio V. J., Fernández Y., Bengoechea J. A., Randall R. E., Ortín J. 2014; An unbiased genetic screen reveals the polygenic nature of the influenza virus anti-interferon response. J Virol 88:4632–4646 [View Article][PubMed]
    [Google Scholar]
  28. Peterhans E., Schweizer M. 2013; BVDV: a pestivirus inducing tolerance of the innate immune response. Biologicals 41:39–51 [View Article][PubMed]
    [Google Scholar]
  29. Reed L., Muench H. 1938; A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  30. Reuter G., Zimsek-Mijovski J., Poljsak-Prijatelj M., Di Bartolo I., Ruggeri F. M., Kantala T., Maunula L., Kiss I., Kecskeméti S. other authors 2010; Incidence, diversity, and molecular epidemiology of sapoviruses in swine across Europe. J Clin Microbiol 48:363–368 [View Article][PubMed]
    [Google Scholar]
  31. Seago J., Hilton L., Reid E., Doceul V., Jeyatheesan J., Moganeradj K., McCauley J., Charleston B., Goodbourn S. 2007; The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol 88:3002–3006 [View Article][PubMed]
    [Google Scholar]
  32. Sherwood V., Burgert H.-G., Chen Y.-H., Sanghera S., Katafigiotis S., Randall R. E., Connerton I., Mellits K. H. 2007; Improved growth of enteric adenovirus type 40 in a modified cell line that can no longer respond to interferon stimulation. J Gen Virol 88:71–76 [View Article][PubMed]
    [Google Scholar]
  33. Shivanna V., Kim Y., Chang K.-O. 2014; The crucial role of bile acids in the entry of porcine enteric calicivirus. Virology 456–457:268–278 [View Article][PubMed]
    [Google Scholar]
  34. Thiry E., Poel W. H., Mauroy A., Thys C., Honing R. H.-V. 2012; Development and application of a SYBR green RT-PCR for first line screening and quantification of porcine sapovirus infection. BMC Vet Res 8:193 [CrossRef]
    [Google Scholar]
  35. Wang Q.-H., Souza M., Funk J. A., Zhang W., Saif L. J. 2006; Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J Clin Microbiol 44:2057–2062 [View Article][PubMed]
    [Google Scholar]
  36. Wobus C. E., Thackray L. B., Virgin H. W. IV 2006; Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80:5104–5112 [View Article][PubMed]
    [Google Scholar]
  37. Young D. F., Andrejeva L., Livingstone A., Goodbourn S., Lamb R. A., Collins P. L., Elliott R. M., Randall R. E. 2003; Virus replication in engineered human cells that do not respond to interferons. J Virol 77:2174–2181 [View Article][PubMed]
    [Google Scholar]
  38. Yu X.-L., Li J., Xiao C.-T., Liu G.-H., Yan Y.-Q., Li M.-X., Yang J., Huang Z.-B., Li R.-C. 2012; RT-PCR test for detecting porcine sapovirus in weanling piglets in Hunan Province, China. Trop Anim Health Prod 44:1335–1339 [CrossRef]
    [Google Scholar]
  39. Yunus M. A., Chung L. M. W., Chaudhry Y., Bailey D., Goodfellow I. 2010; Development of an optimized RNA-based murine norovirus reverse genetics system. J Virol Methods 169:112–118 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071365-0
Loading
/content/journal/jgv/10.1099/vir.0.071365-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed