1887

Abstract

Part of the family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071282-0
2015-02-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/221.html?itemId=/content/journal/jgv/10.1099/vir.0.071282-0&mimeType=html&fmt=ahah

References

  1. Aguilar M. J.. ( 1970;). Pathological changes in brain and other target organs of infant and weanling mice after infection with non-neuroadapted Western equine encephalitis virus. . Infect Immun 2:, 533–542.[PubMed]
    [Google Scholar]
  2. Aguilar P. V., Paessler S., Carrara A. S., Baron S., Poast J., Wang E., Moncayo A. C., Anishchenko M., Watts D. et al. ( 2005;). Variation in interferon sensitivity and induction among strains of Eastern equine encephalitis virus. . J Virol 79:, 11300–11310. [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson C. R., Downs W. G., Wattley G. H., Ahin N. W., Reese A. A.. ( 1957;). Mayaro virus: a new human disease agent. II. Isolation from blood of patients in Trinidad, B.W.I. . Am J Trop Med Hyg 6:, 1012–1016.[PubMed]
    [Google Scholar]
  4. Atasheva S., Wang E., Adams A. P., Plante K. S., Ni S., Taylor K., Miller M. E., Frolov I., Weaver S. C.. ( 2009;). Chimeric alphavirus vaccine candidates protect mice from intranasal challenge with Western equine encephalitis virus. . Vaccine 27:, 4309–4319. [CrossRef][PubMed]
    [Google Scholar]
  5. Azevedo R. S., Silva E. V., Carvalho V. L., Rodrigues S. G., Nunes-Neto J. P., Monteiro H., Peixoto V. S., Chiang J. O., Nunes M. R., Vasconcelos P. F.. ( 2009;). Mayaro fever virus, Brazilian Amazon. . Emerg Infect Dis 15:, 1830–1832. [CrossRef][PubMed]
    [Google Scholar]
  6. Balluz I. M., Glasgow G. M., Killen H. M., Mabruk M. J., Sheahan B. J., Atkins G. J.. ( 1993;). Virulent and avirulent strains of Semliki Forest virus show similar cell tropism for the murine central nervous system but differ in the severity and rate of induction of cytolytic damage. . Neuropathol Appl Neurobiol 19:, 233–239. [CrossRef][PubMed]
    [Google Scholar]
  7. Barabé N. D., Rayner G. A., Christopher M. E., Nagata L. P., Wu J. Q.. ( 2007;). Single-dose, fast-acting vaccine candidate against western equine encephalitis virus completely protects mice from intranasal challenge with different strains of the virus. . Vaccine 25:, 6271–6276. [CrossRef][PubMed]
    [Google Scholar]
  8. Beck C. E., Wyckoff R. W.. ( 1938;). Venezuelan Equine Encephalomyelitis. . Science 88:, 530. [CrossRef][PubMed]
    [Google Scholar]
  9. Bianchi T. I., Aviles G., Monath T. P., Sabattini M. S.. ( 1993;). Western equine encephalomyelitis: virulence markers and their epidemiologic significance. . Am J Trop Med Hyg 49:, 322–328.[PubMed]
    [Google Scholar]
  10. Bradish C. J., Allner K., Maber H. B.. ( 1971;). The virulence of original and derived strains of Semliki forest virus for mice, guinea-pigs and rabbits. . J Gen Virol 12:, 141–160. [CrossRef][PubMed]
    [Google Scholar]
  11. Casals J., Palacios R.. ( 1941;). The Complement Fixation Test in the Diagnosis of Virus Infections of the Central Nervous System. . J Exp Med 74:, 409–426. [CrossRef][PubMed]
    [Google Scholar]
  12. Chandak N. H., Kashyap R. S., Kabra D., Karandikar P., Saha S. S., Morey S. H., Purohit H. J., Taori G. M., Daginawala H. F.. ( 2009;). Neurological complications of Chikungunya virus infection. . Neurol India 57:, 177–180. [CrossRef][PubMed]
    [Google Scholar]
  13. Charles P. C., Walters E., Margolis F., Johnston R. E.. ( 1995;). Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. . Virology 208:, 662–671. [CrossRef][PubMed]
    [Google Scholar]
  14. Charles P. C., Brown K. W., Davis N. L., Hart M. K., Johnston R. E.. ( 1997;). Mucosal immunity induced by parenteral immunization with a live attenuated Venezuelan equine encephalitis virus vaccine candidate. . Virology 228:, 153–160. [CrossRef][PubMed]
    [Google Scholar]
  15. Chen W., Foo S. S., Rulli N. E., Taylor A., Sheng K. C., Herrero L. J., Herring B. L., Lidbury B. A., Li R. W. et al. ( 2014;). Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. . Proc Natl Acad Sci U S A 111:, 6040–6045. [CrossRef][PubMed]
    [Google Scholar]
  16. Chew-Lim M.. ( 1975;). Mouse encephalitis induced by avirulent Semliki Forest virus. . Vet Pathol 12:, 387–393.[PubMed]
    [Google Scholar]
  17. Chew-Lim M.. ( 1979;). Brain viral persistence and myelin damage in nude mice. . Can J Comp Med 43:, 39–43.[PubMed]
    [Google Scholar]
  18. Chew-Lim M., Webb H. E., Jagelman S.. ( 1977;). The effect of irradiation on demyelination induced by avirulent Semliki Forest virus. . Br J Exp Pathol 58:, 459–464.[PubMed]
    [Google Scholar]
  19. Chung D. H., Jonsson C. B., Tower N. A., Chu Y. K., Sahin E., Golden J. E., Noah J. W., Schroeder C. E., Sotsky J. B. et al. ( 2014;). Discovery of a novel compound with anti-Venezuelan equine encephalitis virus activity that targets the nonstructural protein 2. . PLoS Pathog 10:, e1004213. [CrossRef][PubMed]
    [Google Scholar]
  20. Cook S. H., Griffin D. E.. ( 2003;). Luciferase imaging of a neurotropic viral infection in intact animals. . J Virol 77:, 5333–5338. [CrossRef][PubMed]
    [Google Scholar]
  21. Coppenhaver D. H., Singh I. P., Sarzotti M., Levy H. B., Baron S.. ( 1995;). Treatment of intracranial alphavirus infections in mice by a combination of specific antibodies and an interferon inducer. . Am J Trop Med Hyg 52:, 34–40.[PubMed]
    [Google Scholar]
  22. Couderc T., Chrétien F., Schilte C., Disson O., Brigitte M., Guivel-Benhassine F., Touret Y., Barau G., Cayet N. et al. ( 2008;). A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. . PLoS Pathog 4:, e29. [CrossRef][PubMed]
    [Google Scholar]
  23. Couderc T., Khandoudi N., Grandadam M., Visse C., Gangneux N., Bagot S., Prost J. F., Lecuit M.. ( 2009;). Prophylaxis and therapy for Chikungunya virus infection. . J Infect Dis 200:, 516–523. [CrossRef][PubMed]
    [Google Scholar]
  24. Dal Canto M. C., Rabinowitz S. G.. ( 1981;). Central nervous system demyelination in Venezuelan equine encephalomyelitis infection. . J Neurol Sci 49:, 397–418. [CrossRef][PubMed]
    [Google Scholar]
  25. Das D., Gares S. L., Nagata L. P., Suresh M. R.. ( 2004;). Evaluation of a western equine encephalitis recombinant E1 protein for protective immunity and diagnostics. . Antiviral Res 64:, 85–92. [CrossRef][PubMed]
    [Google Scholar]
  26. Das D., Nagata L. P., Suresh M. R.. ( 2007;). Immunological evaluation of Escherichia coli expressed E2 protein of Western equine encephalitis virus. . Virus Res 128:, 26–33. [CrossRef][PubMed]
    [Google Scholar]
  27. Deresiewicz R. L., Thaler S. J., Hsu L., Zamani A. A.. ( 1997;). Clinical and neuroradiographic manifestations of eastern equine encephalitis. . N Engl J Med 336:, 1867–1874. [CrossRef][PubMed]
    [Google Scholar]
  28. Dhanwani R., Khan M., Alam S. I., Rao P. V., Parida M.. ( 2011;). Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. . Proteomics 11:, 1936–1951. [CrossRef][PubMed]
    [Google Scholar]
  29. Dhanwani R., Khan M., Lomash V., Rao P. V., Ly H., Parida M.. ( 2014;). Characterization of chikungunya virus induced host response in a mouse model of viral myositis. . PLoS ONE 9:, e92813. [CrossRef][PubMed]
    [Google Scholar]
  30. Elvin S. J., Bennett A. M., Phillpotts R. J.. ( 2002;). Role for mucosal immune responses and cell-mediated immune functions in protection from airborne challenge with Venezuelan equine encephalitis virus. . J Med Virol 67:, 384–393. [CrossRef][PubMed]
    [Google Scholar]
  31. Enserink M.. ( 2006;). Massive outbreak draws fresh attention to little-known virus. . Science 311:, 1085. [CrossRef][PubMed]
    [Google Scholar]
  32. Fazakerley J. K.. ( 2004;). Semliki forest virus infection of laboratory mice: a model to study the pathogenesis of viral encephalitis. . Arch Virol Suppl 18:, 179–190.[PubMed]
    [Google Scholar]
  33. Fazakerley J. K., Amor S., Webb H. E.. ( 1983;). Reconstitution of Semliki forest virus infected mice, induces immune mediated pathological changes in the CNS. . Clin Exp Immunol 52:, 115–120.[PubMed]
    [Google Scholar]
  34. Fazakerley J. K., Pathak S., Scallan M., Amor S., Dyson H.. ( 1993;). Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. . Virology 195:, 627–637. [CrossRef][PubMed]
    [Google Scholar]
  35. Fleming S., Ikeda H., Pessoa V. F.. ( 1982;). Pattern and extent of demyelination in the optic-nerve of the mouse infected with Semliki Forest virus. . J Physiol 327:, 28P.
    [Google Scholar]
  36. Fragkoudis R., Ballany C. M., Boyd A., Fazakerley J. K.. ( 2008;). In Semliki Forest virus encephalitis, antibody rapidly clears infectious virus and is required to eliminate viral material from the brain, but is not required to generate lesions of demyelination. . J Gen Virol 89:, 2565–2568. [CrossRef][PubMed]
    [Google Scholar]
  37. Gardner C. L., Burke C. W., Tesfay M. Z., Glass P. J., Klimstra W. B., Ryman K. D.. ( 2008;). Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. . J Virol 82:, 10634–10646. [CrossRef][PubMed]
    [Google Scholar]
  38. Gardner C. L., Ebel G. D., Ryman K. D., Klimstra W. B.. ( 2011;). Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. . Proc Natl Acad Sci U S A 108:, 16026–16031. [CrossRef][PubMed]
    [Google Scholar]
  39. Gardner C. L., Burke C. W., Higgs S. T., Klimstra W. B., Ryman K. D.. ( 2012;). Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type Chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. . Virology 425:, 103–112. [CrossRef][PubMed]
    [Google Scholar]
  40. Gardner J., Anraku I., Le T. T., Larcher T., Major L., Roques P., Schroder W. A., Higgs S., Suhrbier A.. ( 2010;). Chikungunya virus arthritis in adult wild-type mice. . J Virol 84:, 8021–8032. [CrossRef][PubMed]
    [Google Scholar]
  41. Gates M. C., Sheahan B. J., Atkins G. J.. ( 1984;). The pathogenicity of the M9 mutant of Semliki Forest virus in immune-compromised mice. . J Gen Virol 65:, 73–80. [CrossRef][PubMed]
    [Google Scholar]
  42. Gates M. C., Sheahan B. J., O’Sullivan M. A., Atkins G. J.. ( 1985;). The pathogenicity of the A7, M9 and L10 strains of Semliki Forest virus for weanling mice and primary mouse brain cell cultures. . J Gen Virol 66:, 2365–2373. [CrossRef][PubMed]
    [Google Scholar]
  43. Gauci P. J., Wu J. Q., Rayner G. A., Barabé N. D., Nagata L. P., Proll D. F.. ( 2010;). Identification of Western equine encephalitis virus structural proteins that confer protection after DNA vaccination. . Clin Vaccine Immunol 17:, 176–179. [CrossRef][PubMed]
    [Google Scholar]
  44. Giltner L. T., Shahan M. S.. ( 1933;). The immunological relationship of eastern and western strains of Equine encephalomyelitis virus. . Science 78:, 587–588. [CrossRef][PubMed]
    [Google Scholar]
  45. Grieder F. B., Vogel S. N.. ( 1999;). Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. . Virology 257:, 106–118. [CrossRef][PubMed]
    [Google Scholar]
  46. Gunn B. M., Morrison T. E., Whitmore A. C., Blevins L. K., Hueston L., Fraser R. J., Herrero L. J., Ramirez R., Smith P. N. et al. ( 2012;). Mannose binding lectin is required for alphavirus-induced arthritis/myositis. . PLoS Pathog 8:, e1002586. [CrossRef][PubMed]
    [Google Scholar]
  47. Halsey E. S., Siles C., Guevara C., Vilcarromero S., Jhonston E. J., Ramal C., Aguilar P. V., Ampuero J. S.. ( 2013;). Mayaro virus infection, Amazon Basin region, Peru, 2010-2013. . Emerg Infect Dis 19:, 1839–1842. [CrossRef][PubMed]
    [Google Scholar]
  48. Hart M. K., Pratt W., Panelo F., Tammariello R., Dertzbaugh M.. ( 1997;). Venezuelan equine encephalitis virus vaccines induce mucosal IgA responses and protection from airborne infection in BALB/c, but not C3H/HeN mice. . Vaccine 15:, 363–369. [CrossRef][PubMed]
    [Google Scholar]
  49. Herrero L. J., Nelson M., Srikiatkhachorn A., Gu R., Anantapreecha S., Fingerle-Rowson G., Bucala R., Morand E., Santos L. L., Mahalingam S.. ( 2011;). Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. . Proc Natl Acad Sci U S A 108:, 12048–12053. [CrossRef][PubMed]
    [Google Scholar]
  50. Herrero L. J., Bettadapura J., Lidbury B., Sheng K. C., Herring B. L., Zakhery A., Hey-Cunningham W. J., Mahalingam S.. ( 2014;). Characterization of Barmah Forest virus (BFV) pathogenesis in a mouse model. . J Gen Virol 95:, 2146–2154. [CrossRef][PubMed]
    [Google Scholar]
  51. Howitt B.. ( 1938;). Recovery of the Virus of Equine Encephalomyelitis from the Brain of a Child. . Science 88:, 455–456. [CrossRef][PubMed]
    [Google Scholar]
  52. Jackson A. C., SenGupta S. K., Smith J. F.. ( 1991;). Pathogenesis of Venezuelan equine encephalitis virus infection in mice and hamsters. . Vet Pathol 28:, 410–418. [CrossRef][PubMed]
    [Google Scholar]
  53. Jacups S. P., Whelan P. I., Currie B. J.. ( 2008;). Ross River virus and Barmah Forest virus infections: a review of history, ecology, and predictive models, with implications for tropical northern Australia. . Vector Borne Zoonotic Dis 8:, 283–298. [CrossRef][PubMed]
    [Google Scholar]
  54. Jagelman S., Suckling A. J., Webb H. E., Bowen F. T.. ( 1978;). The pathogenesis of avirulent Semliki Forest virus infections in athymic nude mice. . J Gen Virol 41:, 599–607. [CrossRef][PubMed]
    [Google Scholar]
  55. Johnson R. T.. ( 1965;). Virus invasion of the central nervous system: a study of Sindbis virus infection in the mouse using fluorescent antibody. . Am J Pathol 46:, 929–943.[PubMed]
    [Google Scholar]
  56. Julander J. G., Skirpstunas R., Siddharthan V., Shafer K., Hoopes J. D., Smee D. F., Morrey J. D.. ( 2008;). C3H/HeN mouse model for the evaluation of antiviral agents for the treatment of Venezuelan equine encephalitis virus infection. . Antiviral Res 78:, 230–241. [CrossRef][PubMed]
    [Google Scholar]
  57. Julander J. G., Smee D. F., Morrey J. D., Furuta Y.. ( 2009;). Effect of T-705 treatment on western equine encephalitis in a mouse model. . Antiviral Res 82:, 169–171. [CrossRef][PubMed]
    [Google Scholar]
  58. King L. S.. ( 1940a;). Studies on eastern equine encephalomyelitis: IV. Infection in the mouse with fresh and fixed virus. . J Exp Med 71:, 95–106. [CrossRef][PubMed]
    [Google Scholar]
  59. King L. S.. ( 1940b;). Studies on eastern equine encephalomyelitis: V. Histopathology in the mouse. . J Exp Med 71:, 107–112. [CrossRef][PubMed]
    [Google Scholar]
  60. Kiwanuka N., Sanders E. J., Rwaguma E. B., Kawamata J., Ssengooba F. P., Najjemba R., Were W. A., Lamunu M., Bagambisa G. et al. ( 1999;). O’nyong-nyong fever in south-central Uganda, 1996–1997: clinical features and validation of a clinical case definition for surveillance purposes. . Clin Infect Dis 29:, 1243–1250. [CrossRef][PubMed]
    [Google Scholar]
  61. Kuehne R. W., Pannier W. L., Stephen E. L.. ( 1977;). Indirect mouse model for the evaluation of potential antiviral compounds: results with Venezuelan equine encephalomyelitis virus. . Antimicrob Agents Chemother 11:, 683–687. [CrossRef][PubMed]
    [Google Scholar]
  62. Kundin W. D., Liu C., Rodina P.. ( 1966;). Pathogenesis of Venezuelan equine encephalomyelitis virus. I. Infection in suckling mice. . J Immunol 96:, 39–48.[PubMed]
    [Google Scholar]
  63. Laine M., Luukkainen R., Toivanen A.. ( 2004;). Sindbis viruses and other alphaviruses as cause of human arthritic disease. . J Intern Med 256:, 457–471. [CrossRef][PubMed]
    [Google Scholar]
  64. LeBlanc P. A., Scherer W. F., Sussdorf D. H.. ( 1978;). Infections of congenitally athymic (nude) and normal mice with avirulent and virulent strains of Venezuelan encephalitis virus. . Infect Immun 21:, 779–785.[PubMed]
    [Google Scholar]
  65. Levy O.. ( 2007;). Innate immunity of the newborn: basic mechanisms and clinical correlates. . Nat Rev Immunol 7:, 379–390. [CrossRef][PubMed]
    [Google Scholar]
  66. Lidbury B. A., Simeonovic C., Maxwell G. E., Marshall I. D., Hapel A. J.. ( 2000;). Macrophage-induced muscle pathology results in morbidity and mortality for Ross River virus-infected mice. . J Infect Dis 181:, 27–34. [CrossRef][PubMed]
    [Google Scholar]
  67. Lidbury B. A., Rulli N. E., Suhrbier A., Smith P. N., McColl S. R., Cunningham A. L., Tarkowski A., van Rooijen N., Fraser R. J., Mahalingam S.. ( 2008;). Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. . J Infect Dis 197:, 1585–1593. [CrossRef][PubMed]
    [Google Scholar]
  68. Logue C. H., Bosio C. F., Welte T., Keene K. M., Ledermann J. P., Phillips A., Sheahan B. J., Pierro D. J., Marlenee N. et al. ( 2009;). Virulence variation among isolates of Western equine encephalitis virus in an outbred mouse model. . J Gen Virol 90:, 1848–1858. [CrossRef][PubMed]
    [Google Scholar]
  69. Ludwig G. V., Turell M. J., Vogel P., Kondig J. P., Kell W. K., Smith J. F., Pratt W. D.. ( 2001;). Comparative neurovirulence of attenuated and non-attenuated strains of Venezuelan equine encephalitis virus in mice. . Am J Trop Med Hyg 64:, 49–55.[PubMed]
    [Google Scholar]
  70. Mackenzie A., Suckling A. J., Jagelman S., Wilson A. M.. ( 1978;). Histopathological and enzyme histochemical changes in experimental Semliki Forest virus infection in mice and their relevance to scrapie. . J Comp Pathol 88:, 335–344. [CrossRef][PubMed]
    [Google Scholar]
  71. Mathiot C. C., Grimaud G., Garry P., Bouquety J. C., Mada A., Daguisy A. M., Georges A. J.. ( 1990;). An outbreak of human Semliki Forest virus infections in Central African Republic. . Am J Trop Med Hyg 42:, 386–393.[PubMed]
    [Google Scholar]
  72. Mavalankar D., Shastri P., Raman P.. ( 2007;). Chikungunya epidemic in India: a major public-health disaster. . Lancet Infect Dis 7:, 306–307. [CrossRef][PubMed]
    [Google Scholar]
  73. McGill P. E.. ( 1995;). Viral infections: alpha-viral arthropathy. . Baillieres Clin Rheumatol 9:, 145–150. [CrossRef][PubMed]
    [Google Scholar]
  74. McIntosh B. M., Worth C. B., Kokernot R. H.. ( 1961;). Isolation of Semliki Forest virus from Aedes (Aedimorphus) argenteopunctatus (Theobald) collected in Portuguese East Africa. . Trans R Soc Trop Med Hyg 55:, 192–198. [CrossRef][PubMed]
    [Google Scholar]
  75. Mims C. A., Murphy F. A., Taylor W. P., Marshall I. D.. ( 1973;). Pathogenesis of Ross River virus infection in mice. I. Ependymal infection, cortical thinning, and hydrocephalus. . J Infect Dis 127:, 121–128. [CrossRef][PubMed]
    [Google Scholar]
  76. Mokhtarian F., Swoveland P.. ( 1987;). Predisposition to EAE induction in resistant mice by prior infection with Semliki Forest virus. . J Immunol 138:, 3264–3268.[PubMed]
    [Google Scholar]
  77. Mokhtarian F., Shi Y., Zhu P. F., Grob D.. ( 1994;). Immune responses, and autoimmune outcome, during virus infection of the central nervous system. . Cell Immunol 157:, 195–210. [CrossRef][PubMed]
    [Google Scholar]
  78. Monath T. P., Kemp G. E., Cropp C. B., Chandler F. W.. ( 1978;). Necrotizing myocarditis in mice infected with Western equine encephalitis virus: clinical, electrocardiographic, and histopathologic correlations. . J Infect Dis 138:, 59–66. [CrossRef][PubMed]
    [Google Scholar]
  79. Morgan I. M.. ( 1941;). Influence of age on susceptibility and on immune response of mice to Eastern equine encephalomyelitisvirus. . J Exp Med 74:, 115–132. [CrossRef][PubMed]
    [Google Scholar]
  80. Morrison T. E., Whitmore A. C., Shabman R. S., Lidbury B. A., Mahalingam S., Heise M. T.. ( 2006;). Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. . J Virol 80:, 737–749. [CrossRef][PubMed]
    [Google Scholar]
  81. Morrison T. E., Fraser R. J., Smith P. N., Mahalingam S., Heise M. T.. ( 2007;). Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. . J Virol 81:, 5132–5143. [CrossRef][PubMed]
    [Google Scholar]
  82. Morrison T. E., Simmons J. D., Heise M. T.. ( 2008;). Complement receptor 3 promotes severe Ross River virus-induced disease. . J Virol 82:, 11263–11272. [CrossRef][PubMed]
    [Google Scholar]
  83. Morrison T. E., Oko L., Montgomery S. A., Whitmore A. C., Lotstein A. R., Gunn B. M., Elmore S. A., Heise M. T.. ( 2011;). A mouse model of Chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. . Am J Pathol 178:, 32–40. [CrossRef][PubMed]
    [Google Scholar]
  84. Muñoz M., Navarro J. C.. ( 2012;). [Mayaro: a re-emerging Arbovirus in Venezuela and Latin America]. . Biomedica 32:, 286–302.[PubMed]
    [Google Scholar]
  85. Murphy F. A., Whitfield S. G.. ( 1970;). Eastern equine encephalitis virus infection: electron microscopic studies of mouse central nervous system. . Exp Mol Pathol 13:, 131–146. [CrossRef][PubMed]
    [Google Scholar]
  86. Murphy F. A., Taylor W. P., Mims C. A., Marshall I. D.. ( 1973;). Pathogenesis of Ross River virus infection in mice. II. Muscle, heart, and brown fat lesions. . J Infect Dis 127:, 129–138. [CrossRef][PubMed]
    [Google Scholar]
  87. Nagata L. P., Hu W. G., Parker M., Chau D., Rayner G. A., Schmaltz F. L., Wong J. P.. ( 2006;). Infectivity variation and genetic diversity among strains of Western equine encephalitis virus. . J Gen Virol 87:, 2353–2361. [CrossRef][PubMed]
    [Google Scholar]
  88. Olitsky P. K., Cox H. R.. ( 1936;). Active Immunization of guinea pigs with the virus of equine encephalomyelitis: I. Quantitative experiments with various preparations of active virus. . J Exp Med 63:, 311–324. [CrossRef][PubMed]
    [Google Scholar]
  89. Olitsky P. K., Harford C. G.. ( 1938;). Intraperitoneal and intracerebral routes in serum protection tests with the virus of equine encephalomyelitis: I. A comparison of the two routes in protection tests. . J Exp Med 68:, 173–189. [CrossRef][PubMed]
    [Google Scholar]
  90. Ozden S., Huerre M., Riviere J. P., Coffey L. L., Afonso P. V., Mouly V., de Monredon J., Roger J. C., El Amrani M. et al. ( 2007;). Human muscle satellite cells as targets of Chikungunya virus infection. . PLoS ONE 2:, e527. [CrossRef][PubMed]
    [Google Scholar]
  91. Paquet C., Quatresous I., Solet J. L., Sissoko D., Renault P., Pierre V., Cordel H., Lassalle C., Thiria J. et al. ( 2006;). Chikungunya outbreak in Reunion: epidemiology and surveillance, 2005 to early January 2006. . Euro Surveill 11:, E060202.3.[PubMed]
    [Google Scholar]
  92. Phillips A. T., Stauft C. B., Aboellail T. A., Toth A. M., Jarvis D. L., Powers A. M., Olson K. E.. ( 2013;). Bioluminescent imaging and histopathologic characterization of WEEV neuroinvasion in outbred CD-1 mice. . PLoS ONE 8:, e53462. [CrossRef][PubMed]
    [Google Scholar]
  93. Phillips A. T., Schountz T., Toth A. M., Rico A. B., Jarvis D. L., Powers A. M., Olson K. E.. ( 2014;). Liposome-antigen-nucleic acid complexes protect mice from lethal challenge with western and eastern equine encephalitis viruses. . J Virol 88:, 1771–1780. [CrossRef][PubMed]
    [Google Scholar]
  94. Phillips D. A., Murray J. R., Aaskov J. G., Wiemers M. A.. ( 1990;). Clinical and subclinical Barmah Forest virus infection in Queensland. . Med J Aust 152:, 463–466.[PubMed]
    [Google Scholar]
  95. Phillpotts R. J., Wright A. J.. ( 1999;). TC-83 vaccine protects against airborne or subcutaneous challenge with heterologous mouse-virulent strains of Venezuelan equine encephalitis virus. . Vaccine 17:, 982–988. [CrossRef][PubMed]
    [Google Scholar]
  96. Powers A. M., Logue C. H.. ( 2007;). Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. . J Gen Virol 88:, 2363–2377. [CrossRef][PubMed]
    [Google Scholar]
  97. Pusztai R., Gould E. A., Smith H.. ( 1971;). Infection patterns in mice of an avirulent and virulent strain of Semliki Forest virus. . Br J Exp Pathol 52:, 669–677.[PubMed]
    [Google Scholar]
  98. Raveh A., Delekta P. C., Dobry C. J., Peng W., Schultz P. J., Blakely P. K., Tai A. W., Matainaho T., Irani D. N. et al. ( 2013;). Discovery of potent broad spectrum antivirals derived from marine actinobacteria. . PLoS ONE 8:, e82318. [CrossRef][PubMed]
    [Google Scholar]
  99. Reeves W. C., Hutson G. A., Bellamy R. E., Scrivani R. P.. ( 1958;). Chronic latent infections of birds with Western equine encephalomyelitis virus. . Proc Soc Exp Biol Med 97:, 733–736. [CrossRef][PubMed]
    [Google Scholar]
  100. Reinarz A. B., Broome M. G., Sagik B. P.. ( 1971;). Age-dependent resistance of mice to Sindbis virus infection: viral replication as a function of host age. . Infect Immun 3:, 268–273.[PubMed]
    [Google Scholar]
  101. Rezza G., Nicoletti L., Angelini R., Romi R., Finarelli A. C., Panning M., Cordioli P., Fortuna C., Boros S. et al. ( 2007;). Infection with Chikungunya virus in Italy: an outbreak in a temperate region. . Lancet 370:, 1840–1846. [CrossRef][PubMed]
    [Google Scholar]
  102. Robinson D. M., Berman S., Lowenthal J. P.. ( 1972;). Mouse potency assay for Western equine encephalomyelitis vaccines. . Appl Microbiol 23:, 104–107.[PubMed]
    [Google Scholar]
  103. Ross R. W.. ( 1956;). The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. . J Hyg (Lond) 54:, 177–191. [CrossRef][PubMed]
    [Google Scholar]
  104. Rossi S. L., Guerbois M., Gorchakov R., Plante K. S., Forrester N. L., Weaver S. C.. ( 2013;). IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice. . Virology 437:, 81–88. [CrossRef][PubMed]
    [Google Scholar]
  105. Rulli N. E., Guglielmotti A., Mangano G., Rolph M. S., Apicella C., Zaid A., Suhrbier A., Mahalingam S.. ( 2009;). Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. . Arthritis Rheum 60:, 2513–2523. [CrossRef][PubMed]
    [Google Scholar]
  106. Rulli N. E., Rolph M. S., Srikiatkhachorn A., Anantapreecha S., Guglielmotti A., Mahalingam S.. ( 2011;). Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. . J Infect Dis 204:, 1026–1030. [CrossRef][PubMed]
    [Google Scholar]
  107. Ryman K. D., Klimstra W. B., Nguyen K. B., Biron C. A., Johnston R. E.. ( 2000;). Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. . J Virol 74:, 3366–3378. [CrossRef][PubMed]
    [Google Scholar]
  108. Safavi F., Feliberti J. P., Raine C. S., Mokhtarian F.. ( 2011;). Role of γδ T cells in antibody production and recovery from SFV demyelinating disease. . J Neuroimmunol 235:, 18–26. [CrossRef][PubMed]
    [Google Scholar]
  109. Schäfer A., Whitmore A. C., Konopka J. L., Johnston R. E.. ( 2009;). Replicon particles of Venezuelan equine encephalitis virus as a reductionist murine model for encephalitis. . J Virol 83:, 4275–4286. [CrossRef][PubMed]
    [Google Scholar]
  110. Schilte C., Couderc T., Chretien F., Sourisseau M., Gangneux N., Guivel-Benhassine F., Kraxner A., Tschopp J., Higgs S. et al. ( 2010;). Type I IFN controls Chikungunya virus via its action on nonhematopoietic cells. . J Exp Med 207:, 429–442. [CrossRef][PubMed]
    [Google Scholar]
  111. Schuffenecker I., Iteman I., Michault A., Murri S., Frangeul L., Vaney M. C., Lavenir R., Pardigon N., Reynes J. M. et al. ( 2006;). Genome microevolution of Chikungunya viruses causing the Indian Ocean outbreak. . PLoS Med 3:, e263. [CrossRef][PubMed]
    [Google Scholar]
  112. Seamer J., Randles W. J., Fitzgeorge R.. ( 1967;). The course of Semliki Forest virus infection in mice. . Br J Exp Pathol 48:, 395–402.[PubMed]
    [Google Scholar]
  113. Seay A. R., Wolinsky J. S.. ( 1982;). Ross River virus-induced demyelination: I. Pathogenesis and histopathology. . Ann Neurol 12:, 380–389. [CrossRef][PubMed]
    [Google Scholar]
  114. Seay A. R., Wolinsky J. S.. ( 1983;). Ross River virus-ndash;induced demyelination: II. Ultrastructural studies. . Ann Neurol 14:, 559–568. [CrossRef][PubMed]
    [Google Scholar]
  115. Seay A. R., Griffin D. E., Johnson R. T.. ( 1981;). Experimental viral polymyositis: age dependency and immune responses to Ross River virus infection in mice. . Neurology 31:, 656–660. [CrossRef][PubMed]
    [Google Scholar]
  116. Seymour R. L., Rossi S. L., Bergren N. A., Plante K. S., Weaver S. C.. ( 2013;). The role of innate versus adaptive immune responses in a mouse model of O’nyong-nyong virus infection. . Am J Trop Med Hyg 88:, 1170–1179. [CrossRef][PubMed]
    [Google Scholar]
  117. Smith J. P., Morris-Downes M., Brennan F. R., Wallace G. J., Amor S.. ( 2000;). A role for alpha4-integrin in the pathology following Semliki Forest virus infection. . J Neuroimmunol 106:, 60–68. [CrossRef][PubMed]
    [Google Scholar]
  118. Smith-Norowitz T. A., Sobel R. A., Mokhtarian F.. ( 2000;). B cells and antibodies in the pathogenesis of myelin injury in Semliki Forest Virus encephalomyelitis. . Cell Immunol 200:, 27–35. [CrossRef][PubMed]
    [Google Scholar]
  119. Smithburn K. C., Haddow A. J.. ( 1944;). Semliki Forest virus. I. Isolation and pathogenic properties. . J Immunol 49:, 141–157.
    [Google Scholar]
  120. Sourisseau M., Schilte C., Casartelli N., Trouillet C., Guivel-Benhassine F., Rudnicka D., Sol-Foulon N., Le Roux K., Prevost M. C. et al. ( 2007;). Characterization of reemerging Chikungunya virus. . PLoS Pathog 3:, e89. [CrossRef][PubMed]
    [Google Scholar]
  121. Steele K. E., Davis K. J., Stephan K., Kell W., Vogel P., Hart M. K.. ( 1998;). Comparative neurovirulence and tissue tropism of wild-type and attenuated strains of Venezuelan equine encephalitis virus administered by aerosol in C3H/HeN and BALB/c mice. . Vet Pathol 35:, 386–397. [CrossRef][PubMed]
    [Google Scholar]
  122. Stoermer K. A., Burrack A., Oko L., Montgomery S. A., Borst L. B., Gill R. G., Morrison T. E.. ( 2012;). Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus. . J Immunol 189:, 4047–4059. [CrossRef][PubMed]
    [Google Scholar]
  123. Subak-Sharpe I., Dyson H., Fazakerley J.. ( 1993;). In vivo depletion of CD8+ T cells prevents lesions of demyelination in Semliki Forest virus infection. . J Virol 67:, 7629–7633.[PubMed]
    [Google Scholar]
  124. Suckling A. J., Jagelman S., Webb H. E.. ( 1978a;). A comparison of brain lysosomal enzyme activities in four experimental togavirus encephalitides. . J Neurol Sci 35:, 355–364. [CrossRef][PubMed]
    [Google Scholar]
  125. Suckling A. J., Pathak S., Jagelman S., Webb H. E.. ( 1978b;). Virus-associated demyelination. A model using avirulent Semliki Forest virus infection of mice. . J Neurol Sci 39:, 147–154. [CrossRef][PubMed]
    [Google Scholar]
  126. Suhrbier A., La Linn M.. ( 2004;). Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. . Curr Opin Rheumatol 16:, 374–379. [CrossRef][PubMed]
    [Google Scholar]
  127. Taylor A., Sheng K. C., Herrero L. J., Chen W., Rulli N. E., Mahalingam S.. ( 2013;). Methotrexate treatment causes early onset of disease in a mouse model of Ross River virus-induced inflammatory disease through increased monocyte production. . PLoS ONE 8:, e71146. [CrossRef][PubMed]
    [Google Scholar]
  128. Thach D. C., Kimura T., Griffin D. E.. ( 2000;). Differences between C57BL/6 and BALB/cBy mice in mortality and virus replication after intranasal infection with neuroadapted Sindbis virus. . J Virol 74:, 6156–6161. [CrossRef][PubMed]
    [Google Scholar]
  129. Thangamani S., Higgs S., Ziegler S., Vanlandingham D., Tesh R., Wikel S.. ( 2010;). Host immune response to mosquito-transmitted Chikungunya virus differs from that elicited by needle inoculated virus. . PLoS ONE 5:, e12137. [CrossRef][PubMed]
    [Google Scholar]
  130. Tournebize P., Charlin C., Lagrange M.. ( 2009;). [Neurological manifestations in Chikungunya: about 23 cases collected in Reunion Island]. . Rev Neurol (Paris) 165:, 48–51 (in French). [CrossRef][PubMed]
    [Google Scholar]
  131. Tremain K. E., Ikeda H.. ( 1983;). Physiological deficits in the visual system of mice infected with Semliki Forest virus and their correlation with those seen in patients with demyelinating disease. . Brain 106:, 879–895. [CrossRef][PubMed]
    [Google Scholar]
  132. Tretyakova I., Lukashevich I. S., Glass P., Wang E., Weaver S., Pushko P.. ( 2013;). Novel vaccine against Venezuelan equine encephalitis combines advantages of DNA immunization and a live attenuated vaccine. . Vaccine 31:, 1019–1025. [CrossRef][PubMed]
    [Google Scholar]
  133. Tsetsarkin K. A., Vanlandingham D. L., McGee C. E., Higgs S.. ( 2007;). A single mutation in Chikungunya virus affects vector specificity and epidemic potential. . PLoS Pathog 3:, e201. [CrossRef][PubMed]
    [Google Scholar]
  134. Veckenstedt A., Güttner J., Schroeder C.. ( 1985;). Inhibition by Norakin (triperiden) of Sindbis virus infection in mice. . Acta Virol 29:, 209–215.[PubMed]
    [Google Scholar]
  135. Vogel P., Kell W. M., Fritz D. L., Parker M. D., Schoepp R. J.. ( 2005;). Early events in the pathogenesis of eastern equine encephalitis virus in mice. . Am J Pathol 166:, 159–171. [CrossRef][PubMed]
    [Google Scholar]
  136. Wang E., Petrakova O., Adams A. P., Aguilar P. V., Kang W., Paessler S., Volk S. M., Frolov I., Weaver S. C.. ( 2007;). Chimeric Sindbis/eastern equine encephalitis vaccine candidates are highly attenuated and immunogenic in mice. . Vaccine 25:, 7573–7581. [CrossRef][PubMed]
    [Google Scholar]
  137. Wang E., Volkova E., Adams A. P., Forrester N., Xiao S. Y., Frolov I., Weaver S. C.. ( 2008;). Chimeric alphavirus vaccine candidates for chikungunya. . Vaccine 26:, 5030–5039. [CrossRef][PubMed]
    [Google Scholar]
  138. Weaver S. C., Salas R., Rico-Hesse R., Ludwig G. V., Oberste M. S., Boshell J., Tesh R. B..VEE Study Group ( 1996;). Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. . Lancet 348:, 436–440. [CrossRef][PubMed]
    [Google Scholar]
  139. Weise W. J., Hermance M. E., Forrester N., Adams A. P., Langsjoen R., Gorchakov R., Wang E., Alcorn M. D., Tsetsarkin K., Weaver S. C.. ( 2014;). A novel live-attenuated vaccine candidate for Mayaro fever. . PLoS Negl Trop Dis 8:, e2969. [CrossRef][PubMed]
    [Google Scholar]
  140. Werneke S. W., Schilte C., Rohatgi A., Monte K. J., Michault A., Arenzana-Seisdedos F., Vanlandingham D. L., Higgs S., Fontanet A. et al. ( 2011;). ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. . PLoS Pathog 7:, e1002322. [CrossRef][PubMed]
    [Google Scholar]
  141. Williams A. J., O’Brien L. M., Phillpotts R. J., Perkins S. D.. ( 2009;). Improved efficacy of a gene optimised adenovirus-based vaccine for Venezuelan equine encephalitis virus. . Virol J 6:, 118. [CrossRef][PubMed]
    [Google Scholar]
  142. Williams M. C., Woodall J. P., Corbet P. S., Gillett J. D.. ( 1965a;). O'nyong-nyong Fever: an epidemic virus disease in East Africa. VIII. Virus isolations from Anopheles mosquitoes. . Trans R Soc Trop Med Hyg 59:, 300–306. [CrossRef][PubMed]
    [Google Scholar]
  143. Williams M. C., Woodall J. P., Gillett J. D.. ( 1965b;). O'nyong-Nyong fever: an epidemic virus disease in East Africa. VIi. Virus isolations from man and serological studies up to July 1961. . Trans R Soc Trop Med Hyg 59:, 186–197. [CrossRef][PubMed]
    [Google Scholar]
  144. Wright A. J., Phillpotts R. J.. ( 1998;). Humane endpoints are an objective measure of morbidity in Venezuelan encephalomyelitis virus infection of mice. . Arch Virol 143:, 1155–1162. [CrossRef][PubMed]
    [Google Scholar]
  145. Wu J. Q., Barabé N. D., Chau D., Wong C., Rayner G. R., Hu W. G., Nagata L. P.. ( 2007;). Complete protection of mice against a lethal dose challenge of Western equine encephalitis virus after immunization with an adenovirus-vectored vaccine. . Vaccine 25:, 4368–4375. [CrossRef][PubMed]
    [Google Scholar]
  146. Zacks M. A., Paessler S.. ( 2010;). Encephalitic alphaviruses. . Vet Microbiol 140:, 281–286. [CrossRef][PubMed]
    [Google Scholar]
  147. Zaid A., Sheng K. C., Taylor A., Rulli N. E., Herrero L. J., McNeil P. H., Mahalingam S.. ( 2013;). Exacerbation of alphaviral arthritis and myositis in a mouse model after etanercept treatment is due to diminished levels of interferon a/b. . Virology & Mycology 2:, 122. [CrossRef]
    [Google Scholar]
  148. Ziegler S. A., Lu L., da Rosa A. P., Xiao S. Y., Tesh R. B.. ( 2008;). An animal model for studying the pathogenesis of Chikungunya virus infection. . Am J Trop Med Hyg 79:, 133–139.[PubMed]
    [Google Scholar]
  149. Ziegler S. A., Nuckols J., McGee C. E., Huang Y. J., Vanlandingham D. L., Tesh R. B., Higgs S.. ( 2011;). In vivo imaging of Chikungunya virus in mice and Aedes mosquitoes using a Renilla luciferase clone. . Vector Borne Zoonotic Dis 11:, 1471–1477. [CrossRef][PubMed]
    [Google Scholar]
  150. Zlotnik I., Grant D. P., Batter-Hatton D.. ( 1972;). Encephalopathy in mice following inapparent Semliki Forest Virus (S.F.V.) infection. . Br J Exp Pathol 53:, 125–129.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071282-0
Loading
/content/journal/jgv/10.1099/vir.0.071282-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error